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Abstract

Structural damage assessment has applications in the majority of engineering structures and

mechanical systems ranging from aerospace vehicles to manufacturing equipment. The primary

goals of any structural damage assessment and health monitoring systems are to ascertain the

condition of a structure and to provide an evaluation of changes as a function of time as well as

providing an early-warning of an unsafe condition. There are many structural heath monitoring

and assessment techniques developed for research using numerical simulations and scaled

structural experiments. However, the transition from research to real-world structures has been

rather slow. One major reason for this slow-progress is the existence of uncertainty in every step

of the damage assessment process.

This dissertation research involved the experimental and numerical investigation of uncertainty

in vibration-based structural health monitoring and development of robust detection and

localization methods. The basic premise of vibration-based structural health monitoring is that

changes in structural characteristics, such as stiffness, mass and damping, will affect the global

vibration response of the structure. The diagnostic performance of vibration-based monitoring

system is affected by uncertainty sources such as measurement errors, environmental disturbances

and parametric modeling uncertainties. To address diagnostic errors due to irreducible

uncertainty, a pattern recognition framework for damage detection has been developed to be used

for continuous monitoring of structures. The robust damage detection approach developed is

based on the ensemble of dimensional reduction algorithms for improved damage-sensitive

feature extraction. For damage localization, the determination of an experimental structural model

was performed based on output-only modal analysis. An experimental model correlation

technique is developed in which the discrepancies between the undamaged and damaged modal
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data are isolated based on the integration of sensitivity analysis and statistical sampling, which

minimizes the occurrence of false-damage indication due to uncertainty. To perform diagnostic

decision-making under uncertainty, an evidential reasoning approach for damage assessment is

developed for addressing the possible imprecision in the damage localization results. The newly

developed damage detection and localization techniques are applied and validated through both

vibration test data from literature and in house laboratory experiments.
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1

Chapter 1

Introduction

1.1 Motivation

In today's modern society, the availability, reliability and high-performance of flight vehicles is

increasingly more demanding. The flight transportation systems are major source of network

support for every-day life and economic stability. The impact that aircraft and aerospace industry

has had on our lives and world economy is very pronounced. As such, the aerospace industry

continues at the forefront of engineering research and development technologies. An ever

constant objective in all technological innovations is the maintenance of highly reliable and safe

transportation systems, but as complexity of components and systems increases, and continuous

deterioration of current aircraft exists due to aging, the risk of system faults and failures

increases. Technologies addressing these safety and performance issues rapidly evolving. Recent

developments in sensing technology, signal processing, controllers, and their systematic

integration, have attractive potential for resolving numerous issues related to aircraft diagnostics

and prognostics, such as maintenance optimization, improved performance, extended life of

structures and overall safety improvement.

Figure 1.1 presents a general architecture representing the flight vehicle structural damage

assessment. Automated structural health monitoring and diagnostics based on advanced

technologies will alleviate service and in-flight damage problems.
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Figure 1.1. Structural damage assessment process of flight vehicles.

The primary goals of any structural damage monitoring and assessment system are to ensure

reliability, safety and to minimize life-cycle cost of the structure in question. Damage assessment

has applications in the majority of engineering structures and mechanical systems ranging from

aerospace systems to manufacturing equipment. As a result, a multitude of different approaches

appear in the literature to address the problem of damage assessment, some recent reviews

provide valuable categorization of existing structural heath management methods

[21,37,52,56,72,101,122,163,167,169-171,177]. Multiple structural health monitoring (SHM) and

diagnostic technologies have been developed and applied to numerical simulations and scaled

structural experiments. However, the transition from research to practice has been rather slow

with exception of the rotating machinery industry. Successful applications of rotating machinery

damage diagnosis and prognosis exist because extensive training data is available, and more

importantly, the damage location and damage types as well as operational and environmental
conditions are often well known a priori and do not vary significantly [76].



www.manaraa.com

.3

One major reason for the slow-progress in applying diagnostic technologies to real-world

structures is the existence of uncertainty in every step of the damage assessment process. Early

works in the area of damage estimation focused in direct application of physics-based system

identification techniques, such as estimation of system stiffness matrix and/or modal parameters

[21]. These conventional damage estimation approaches deal with deterministic models where all

the parameters are considered identifiable and uncertainties are not directly accounted for, which
makes it rather difficult to evaluate how reliable the estimated damage index is. Along with the

studies in deterministic damage assessment, consideration of uncertainties has received more

attention in recent years particularly in data-based damage assessment methods. Data-driven

methods rely on previous system measurements for training and assessment of the current system

health state. Although, data-driven methods are great for indicating the presence of damage,

damage assessment results obtained from data-driven methods are generally more simplistic and

lack information in regards to the nature of the damage. More recent works

[107,108,134,148,175,177] have attempted at finding a balance between physics-based and data-

driven methods to maximize the information and confidence levels of the damage diagnosis.

Increasing confidence in damage diagnosis is directly proportional to the uncertainty level
considered.

In applications of structural diagnostic systems, uncertainty may take the form of component

and/or system variability, environmental and operational conditions, data acquisition errors, and

data interrogation errors, to name a few. Uncertainty in plain words is lack of certainty. In more

detail, uncertainty is a sate of limited knowledge where it is impossible to exactly describe

existing state or future outcome(s) [38]. In cases where uncertainty cannot be fully described via

deterministic or random approaches, also known as aleatory uncertainty, then uncertainty is

categorized as epistemic, which deals with lack-of-knowledge of quantities or processes of the
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system or the environment. Many applications of uncertainty analysis in damage assessment

have assumed an aleatory model when the uncertainty is of epistemic nature. Legitimate reasons

can be leveled for reducing epistemic uncertainties to aleatory uncertainties. Consequently,

selecting and developing an uncertainty model can sometimes be more of an art than a science.

The systematic consideration of uncertainties is as important as having the appropriate structural

system model, especially during model validation where the total error between physical

observation and model prediction must be characterized.

1.2 Objectives

This study is to develop a vibration-based damage assessment framework for effective and robust

detection and localization of small scale damage under uncertainty. The research of structural

assessment has been going on for a few decades now, but the transition from laboratory

experiments to industry practice has been rather slow. One of the main reasons is the existence of

uncertainty throughout the damage assessment process. Structural health monitoring has been

identified as a pattern recognition problem, and in order to effectively detect and localize damage

using experimental models, the issue of uncertainty must be properly dealt with. While most

previous studies focused solely on the use of modal parameters, such as natural frequencies and

mode shapes, this study introduces techniques based on pattern recognition and uncertainty

analysis for effectively detecting and localizing structural damage.

The main objectives of this dissertation are:

1. To develop vibration-based SHM techniques which recognize and mitigate the associated

uncertainties. Damage detection and localization is to be performed considering (i)

uncertainties in the measurement noise and the analytical modeling and (ii) the cases when
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only a small number of degrees of freedom are available for measurement and a few

modes are estimated.

2. To study the proper representation, analysis and management of context uncertainties. The

motivating question behind this work is how information should be managed to support

diagnostic decision-making under uncertainty. By addressing the uncertainty issue in

structural diagnostics, the goal of reduced false-diagnosis in structural damage assessment

may be achieved.

3. To develop an effective and robust damage detection technique based on pattern

recognition. Damage in structures needs to be detected at an early stage in order to reduce

the cost of maintenance and possibility of an unsafe scenario, but the change of dynamic

characteristics of structures is relatively insensitive to small scale damage. The goal

therefore is to enhance damage detection by incorporating pattern recognition in a robust

framework. In addition, the question as to whether vibration-based methods are sensitive

enough to detect and localize small scale damage will be addressed.

4. To develop a damage localization approach based on the modal parameter sensitivity to

local structural changes, such as stiffness reduction and mass modifications.

5. In order to perform model-based damage localization under limited sensor outputs, an

output-only modal analysis technique is to be developed in order to obtain un-scaled mode

shapes. Given the experimental model obtained using output-only modal analysis

approach, damage localization can then be performed on modal parameters correlation

analysis of damaged and undamaged conditions.

6. To address the environmental effects on the modal parameters of engineering structures

and to validate the developed damage assessment approach with benchmark vibration data.



www.manaraa.com

6

Figure 1 .2 shows the schematic diagram of the proposed framework for damage detection and

localization. First, perform an evaluation of uncertainty levels or noise content due to

experimental measurement and environmental conditions. Based on vibration experimental data

accumulated through repeated measurements, the objective is to develop a damage detection

approach, which minimizes false indications due to the relatively small sensitivity of modal

parameters to structural changes. Given a true-positive damage detection indication, modal

parameters, such as mode shapes, are estimated based on a sensor merging technique with output-

only structural response. A sensitivity-based modal parameter correlation technique is proposed,

which is based upon the correlation interpretation of changes in modal parameters between an

undamaged reference condition and a damaged one. It should be noted that inclusion of modal-

sensitivity into the damage correlation analysis does not guarantee damage localization results to

be free of false-positives. To minimize false-positives (damage indication in damage-free areas),

a statistical sampling method is introduced into the damage localization process. The proposed

damage assessment techniques are applied and validated using both in-house experiments on

simple structures in laboratory conditions and real engineering structures.

13 Organization of Dissertation

The content and structure of this dissertation is arranged as follows:

Chapter 2 presents a literature review of the state-of-the-art vibration-based structural health

monitoring, and uncertainty issues associated with the damage assessment process.

Chapter 3 presents established methods for addressing and analyzing the two types of data

uncertainty, which are known as aleatory and epistemic uncertainties. Well known techniques

such as probability theory, fuzzy sets, and evidence theory are described in terms of diagnostic

reasoning support systems.
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Chapter 4 presents a proposed damage detection approach which minimizes false-diagnosis

due to aleatory uncertainty. To address the problem of noise content in damage detection, an
ensemble of dimensional reduction method is given to facilitate the damage detection

classification process.

Chapter 5 presents a computational study of structural damage assessment under varying

conditions and uncertainty. Quantitative comparison of dimensional reduction and classification

techniques is given via vibration analysis of a cantilever beam finite element model.

Chapter 6 describes a proposed output-only modal analysis technique based on sensor-merging

for experimentally estimating structural mode shapes. The proposed approach is needed when

limited number of sensor outputs are available and input excitation is not known.

Chapter 7 presents two vibration-based damage localization studies with a proposed sensitivity-

based damage localization method. An in-house experimental structure is analyzed under mass
modifications and their locations are approximated using the proposed damage localization

approach. To validate the proposed damage localization method, the benchmark 1-40 bridge data

is also analyzed and comparison is made with baseline damage localization methods.

Chapter 8 presents an evidential reasoning approach for diagnostic decision-making under

uncertainty. The proposed approach is applied to the vibration-based damage localization results

obtained in Chapter 7. The evidential reasoning approach is based on the Dempster-Shafer (D-S)

theory. This approach is found particularly useful for damage assessment of structures in the

presence of uncertainties and imprecision.

Chapter 9 summarizes and concludes the dissertation. Future work recommendations are also

provided.
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Chapter 2

Literature Review

This chapter reviews the definitions and state-of-the-art structural health monitoring under

uncertainty with a particular focus on vibration-based techniques. We state the need for

developing structural health monitoring technologies for diagnosing aircraft systems particularly

as well as others, such as aerospace, automotive, and civil structural systems. In order to put this

research in the appropriate context, a review of uncertainty sources in damage assessment is

provided.

2.1 Vibration-Based Structural Health Monitoring

Over the last three decades, significant research work has been performed in the area of vibration-

based structural health monitoring (SHM). In parallel, development in related and required fields,

such as modal analysis, system identification and signal processing, have been evolving to

support increase of damage identification performance in its accuracy and reliability.

Multiple research review papers have been written on the theoretical development and

experimental application of damage assessment using structural dynamic properties. Doebling et

al. [37] presented an extensive review of vibration-based SHM up to 1996. Sohn et al. [156]

presented an extension of the vibration-based damage detection methods up to 2001. Carden and

Fanning [21] presented a literature survey with particular emphasis on the research conducted and

published between 1996 and 2003. Humar et al. [72] presented a performance comparison among

the predominant vibration-based SHM methods. In addition, numerous conferences and field-

specific journals have been established to further advance the development and practical
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application of SHM. Although tremendous amount of literature exists on this topic at hand,

significant issues remain to be studied, which have limited the transition from laboratory

experiments to wide industry practice. The work presented in this dissertation aims at addressing

the particular issue of diagnostic uncertainty in SHM. To facilitate the discussion, a brief review

of the relevant literature to the current research is presented.

The basic premise of vibration-based SHM is that changes in structural properties, such as

mass, stiffness, and damping, affect the structural dynamic response of the structure being

observed. By studying the changes in vibration response behavior and performing system

identification, the current health state of the structure can be obtained. For vibration tests, when

available, the excitations and structural responses are measured via sensors and recorder in form

of time history. Time-domain data can then be transformed into the frequency domain, and from

which, the modal properties can be extracted. Although damage identification techniques exist

which can be applied directly to time-domain data, the current review will focus on frequency-

and modal domain data. The modal domain methods have generally attracted more attention and

played a dominant role in state-of-the-art structural damage identification. In addition, the modal

domain analysis has evolved in parallel with the experimental and operational modal analysis

research areas. The physical meanings of the modal properties are more desirable and easier to

interpret than the abstract time-domain mathematical features. Vibration-based SHM techniques

can be grouped in multiple ways, such as physics model-based, inverse models, data-driven,

among others. SHM can be classified based on the level of identification attempted:

Level 1. Detection - determination that damage is present in the structure.

Level 2. Localization - determination of the geometric location of the damage.

Level 3. Quantification - assessment of the severity of the damage.
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Level 4. Prognosis - prediction of the remaining useful life or reliability of the

structure.

The predominant approach for achieving Level 1 is data-driven techniques, such as statistical

pattern recognition. For Levels 2 and 3, no dominant approach exists since in order to locate and

assess the damage, structural domain-specific knowledge is required and that can only be

obtained with the integration of either some form of system identification or reference finite

element model. It is the author's opinion that data-driven techniques are still required to obtain

reliable results. Therefore, a combination of model-based and data-driven techniques must be

utilized to improve localization and quantification. Level 4 requires all of the above, pattern

recognition and reference models, but also knowledge of failure modes, future usage and loading,

and reliability models in order to estimate the remaining useful life. The damage identification

methods based on vibration features can be grouped into: frequency-based methods, mode shape-

based methods, mode shape curvature-based methods, and vibration-based other approaches.

2.1.1 Frequency-based Methods

Initial research in vibration-based SHM techniques focused primarily in damage detection using

shifts in natural frequency [22,37, 145, 174]. The observation that changes in structural properties

can be correlated to changes in natural frequencies was the impetus for using modal methods for

damage identification. Although its simplicity makes it an attractive means for achieving damage

detection, frequency shifts have proven to be relatively insensitive to damage, and even worse,

these are sensitive to changes in environment and operations.

Early research by Whittome and Dodds in 1983 [174] used changes in resonant frequencies and

response spectra to identify damage in offshore oil platforms. Changes in resonant frequencies of

3% over time were observed and attributed to changes to the mass of the decks and to changes in
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the tide level (excitation). Frequency changes of 10-15% were observed when a structural

modification was implemented that resembled a structural failure near the waterline. Cawley and

Adams [22] studied how damage changes the dynamic stiffness of structures and used frequency

measurements to detect damage using finite element model of structures. Salawu [145] presented

an extensive review of publications prior to 1997 dealing with the detection of structural damage

through frequency changes. Salawu concluded that natural frequency changes along are not

sufficient for a unique damage localization because cracks associated with similar crack lengths

but at two different locations may cause the same amount of frequency change. The latter issue if

a major problem in damage localization. The same modal parameter changes can be obtained via

multiple damage scenarios. Heylen and Lammens [71] developed the frequency response
assurance criterion (FRAC) to correlate any two frequency response functions representing the

same input-output relationship. The FRAC method was initially developed to correlate synthesize

data with experimental data. A similar variation in the FRAC is the frequency domain assurance

criterion (FDAC) developed by Pascual et al. [131], which is a FRAC-type method evaluated

with different frequency shifts. Since the difference in frequency response function (FRF) model

updating is often an FRF that is in question due to frequencies or resonances and antiresonances,

the FDAC is formulated to identify this problem. Messina et al. [113] proposed a correlation

coefficient termed the multiple damage location assurance criterion (MDLAC) by introducing

two methods of estimating the size of defects in a structure. MDLAC is defined as a statistical

correlation between the analytical and experimental predictions of the frequency changes.

A major drawback of the frequency-based techniques is that unrealistic damage patterns are

often found. These methods cannot distinguish between damage at symmetrical locations in a

symmetric structure. In addition, the number of measured eigenfrequencies is generally lower

than the number of unknown model parameters, resulting in a non-unique solution. Due to its
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inherent drawbacks, the frequency-based damage assessment applications for real complex

structures or multiple damage detection are limited. Therefore, additional modal parameters, such

as mode shapes are utilized in damage assessment analysis.

2.1.2 Mode Shape-based Methods

Compared to frequency-based methods, the advantage of using mode shapes for damage

assessment is that mode shapes provide local information, which makes them more sensitive to

local damages and enables them to be used directly in multiple damage detection. Given that

resonant frequencies are properly identified, the mode shapes are less sensitive to environmental

effects than natural frequencies.

The most common technique used for simple mode shape correlation between two states is

known as the modal assurance criterion (MAC) developed by Allemang and Brown [4]. The

MAC is a measure of similarity of two or more mode shapes. A MAC value of 1 indicates perfect

correlation, and a value of 0 indicates no correlation or orthogonal modes. The MAC value only

provides correlation among mode shapes, but not by each degree of freedom (DOF), which

prevents damage localization. Lieven and Ewins [91] developed the coordinate modal assurance

criterion (COMAC) to identify which measurement DOF contribute negatively to low value of

MAC. The COMAC method compares a set of mode pairs, analytical versus experimental or

experimental versus experimental. The two modal vectors in each mode pair represent the same
modal vector, but each mode pairs represents all modes of interest in a given frequency range.

Shi et al. [151] extended the damage localization method based on MDLAC by using

incomplete mode shape instead of modal frequency. The proposed two-step damage localization

procedure is to preliminary localize damage sites by using incomplete measured modes and its

extent again by using natural frequencies. Multiple other variations of mode shape correlation
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approaches have been proposed in the literature, but additional issues exist on top of the

correlation process. Given simulated or well-controlled experimental data, the mode shape

correlation methods are well verified, but there are significant difficulties with full scale

structures. The predominant issues with mode shape-based methods is the noise and estimation

errors in the modal analysis techniques, which are highly dependent on excitation levels and type,

and available inputs and outputs measurements.

2.1.3 Curvature-based Methods

Seeking further sensitive to damage, researchers have sought additional features based on modal

parameters to deal with the shortcomings of frequency and mode shape-based methods. Among

the features studied, the mode shape curvature (MSC) has been shown to have high sensitivity to

localized damage. Pandey et al. [129] suggested that the MSC, that is, the second derivatives of

mode shape, are highly sensitive to damage and can be used to localize it. Because MSC method

is highly sensitive to mode shape changes, then it has been shown [50,72] that it is also highly

sensitive to errors. In order to reduce the possibility of a false-positives, only the first few low

curvature mode shapes can be used in for damage identification.

The development of high-sensitivity methods for increasing damage assessment accuracy

demonstrates one of the main problems, which is that in all methods the same features that are

sensitive to damage are also sensitive to errors or noise. The use of strain energy method or strain

energy damage index (SEDI) to detect structural damage has been employed in several studies.

Because the SEDI approach is also based on the second derivative of mode shapes, this particular

can be categorized as a curvature-based method. The SEDI method was originally developed by

Stubbs et al. [165] and applied it to beam like structures and is based on the comparison of modal

strain energy before and after damage. When a particular vibration mode stores a large amount of



www.manaraa.com

15

strain energy in particular structural load path, the frequency and shape of that mode are highly

sensitive to changes in that load path. A particular advantage of this method is that it also

quantifies damage by estimating the percent reduction in the localized stiffness.

Kim and Stubbs [84] applied the SEDI method to locate damage in finite element

computational simulations and experimental plate girder. The method was demonstrated to find

multiple damage sites. In addition, it was found that false-negative and false-positive outcomes

were strongly influenced by the quality and amount of modal information. Humar et al. [72]

conducted a damage localization comparison study which included frequency-based, mode-shape

based, curvature-based methods, among others. Results demonstrated that the SEDI method

appeared to be the most successful in predicting the location of damage. However, it was pointed

out that method may not be successful when a damaged member contributes little to the energy in

the measured modes. Farrar et al. [49] were successful using the SEDI method in locating damage

in a bridge. They found that using this method outperformed the direct comparison of mode shape

curvature before and after the damage.

Cornwell et al. [27] extended the SEDI method to 2D strain method for use in plate-like

structures. Both the ID and 2D SEDI methods were applied to experimental aluminum plate with

two saw cuts induced damage. At low levels of damage, the SEDI approaches exhibited a

tendency to produce false-positives.

Although damage localization methods based on curvature analysis have been shown to have

higher sensitivity to damage, they also have an increasing sensitivity to measurement and

parametric estimates noise, which creates significant false-positives. More robust damage

identification methods are required that maintain the damage sensitivity, but at the same time, can

minimize the negative effects caused by uncertainty in the measured and estimated data.
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2.1.4 Other Vibration-Based Methods

Another category of damage identification methods makes use of the dynamically measured

flexibility matrix to estimate structural changes. The flexibility matrix is defined as the inverse of

the stiffness matrix. In the flexibility matrix, each column represents a set of nodal displacements

of the structure due to a unit force applied at one of the DOF. Pandey and Biswas [128] suggested

using changes in modal flexibility for damage identification. The method was applied to

numerical models and an actual spliced beam. The numerical studies suggested that method

worked best when damage was located at a section with high bending moments.

Based on the modification of structural model parameters in a numerical model, the model

updating general approach is another class of damage identification. The model updating

technique requires a finite element model (I7EM) in combination with an optimization algorithm

in which differences between experimental and numerical modal data are minimized by adjusting

uncertain model parameters. The FEM has to approximate very well or as closely as possible the

real structure in order to be efficient in the damage identification process. Yuen et al. [190]

presented a method for detecting significant stiffness changes through continual updating of a

structural model using vibration measurements. A Bayesian probabilistic formulation was used to

treat uncertainties which arose from the measurement noise, modeling errors, and an inherent

non-uniqueness common to this type of inverse problem. Zimmerman and Kaouk [195] presented

the minimum rank perturbation technique, which was motivated by the observation that damage

will tend to be concentrated in a few structural members, rather than distributed throughout the

structure. The method was successfully applied on a eight-bay truss where damage was induced

by removing specified members.

The main advantage of model updating techniques is that once a FEM has been found with

good and consistent correlation to experimental results, one can then use the model to estimate
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the severity of damage, such as stiffness reduction. Numerous published results of this class of

methods have been published; however limited success has been demonstrated to date.

2.2 Sources of Uncertainty in Structural Health Monitoring

Flight vehicle structures are different than any other engineering systems in terms of primarily

their dynamic environment, see Figure 2.1. The literature review presented in this section is based

on a review paper by Lopez and Sarigul-Klijn [101] in which a comprehensive review of

uncertainties involved in flight vehicle structural damage monitoring, diagnosis, prognosis and

control was presented.

In flight vehicle structural terms, diagnostics is the detection and quantification of damage;

prognostics occur when given damage assessment estimation of useful life remaining and/or

performance life remaining until full failure is determined. In order to conduct diagnosis and

prognosis several steps are required. Diagnostics is to investigate or analyze the cause or nature of

a condition, situation, or problem, whereas prognosis is to know before, to calculate or predict the

future as a result of rational study and analysis of available pertinent data [51].

In general, a diagnostic system consists of data acquisition system, signal processing, feature

extraction and selection, physical models, and knowledge base of damage when possible, which

may be derived from expert knowledge, such as historical data. Decision making is made by

comparing the extracted feature information with the knowledge base, essentially becoming a

pattern recognition method. For degradation analysis and prognosis, performance and degradation

predictive models, which could be derived from time-series analysis methods, probability theory
and/or artificial intelligence approaches, are required to forecast when the structural performance

will decrease to an unacceptable level. In the areas of damage assessment and prognosis,

information gathering and decision making processes are plagued by imperfect communication
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Channels, in other words noise and ignorance, which have been improved via enhanced signal

and sensing capabilities, additional data mining techniques, and adding diagnostic system

redundancy.
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2.2.1 Model Uncertainties

The demand for expansion of the performance envelope of structures, such as ever increasing

speeds, has generated significant advances in the development of lighter, more flexible, and

consequently, more complex and nonlinear structural systems. At the same time, higher-fidelity

models with faster solution methods and algorithms have been developed for many applications

resulting in reduced simulation and cycle times. However, for complex structural systems, the

computational advances still fall short for many reasons. Furthermore, the potential of modeling

and simulation to understand the innate system behavior under unforeseen damage scenarios

becomes highly inefficient. Recently, Worden et al. [176] presented a review of nonlinear

dynamics applications to structural health monitoring. The uncertainties of models of complex

systems are much greater than for simple systems. Reduced order models are simplifications of

system descriptions which allow one to use incomplete information about the system, and as

such, if high definition of information is not necessary, one is allowed to suppress or reduced the

order of the mode without loss of model accuracy. The concept of uncertainty is therefore

connected with complexity and information. This review classifies nonlinear techniques for SHM

into three main categories: (i) nonlinear indicator functions; (ii) nonlinear dynamical systems

theory; (iii) and nonlinear system identification. Research developments in nonlinear dynamical

systems have resulted in increasing applications that take advantage of nonlinear phenomena to

design damage detection algorithms.

Nonlinear instabilities experienced by many engineering systems and the resulting aperiodic

motions have been studied. Numerous works [83,123] using damaged and buckled beams have

been made chaotic motions are studied to understand the fractal characteristics of strange

attractors via Poincaré maps, in related work, the changes in the geometrical features of an

attractor associated with the structural response have been studied in the considered system.
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Epureanu et al. [43] presented the application of probability distribution function of sampled

attractor dynamics and proper orthogonal decomposition to damage detection of an aeroelastic

system under stretching and bending coupling. Although this study addresses nonlinear dynamics

and complex fluid-structure interaction, the study only presented a numerical study without

accommodation of signal noise and measurement variability.

Recently, progress has been made by using chaotic excitation and attractor analysis to detect

damage in structures [83]. The approach is validated through experiments of a cantilever beam.

By tailoring the chaotic excitation, these studies have shown that differences in response

attractors can be used to identify structural damage. To accommodate for uncertainty, a baseline

of healthy attractors, the damage attractors are identified. In addition, statistical process control is

used to create and track the nonlinear cross-prediction error (NCPE) as structure changes from

healthy to increasingly damage. Harrison et al. [68] presented a comparative study among NCPE,

chaotic amplification of attractor distortion (CAAD), Holder exponent, attractor continuity map,

and the simple root mean square (RMS) statistic. This study was performed on a composite

unmanned aerial vehicle (UAV) wing using fibre-bragg grating sensors. Due to the timescale of

experiments, environment effects and measurement errors are part of the presented analysis.
Results of this work demonstrate that CAAD and Holder exponent identify damage in all test

cases, while the NCPE and continuity measures based on attractor analysis and RMS features fail

at detecting the damage. Adams et al. [2] presented a nonlinear dynamical systems framework for

structural diagnosis and prognosis based on lower dimensional damage manifolds and normal

form simplifications. However, the experimental results demonstrated were rather limited and no

clear identification and assessment of damage was made based on the proposed nonlinear

approach. Many other nonlinear dynamical systems approaches, such as Lyapunov exponents,

local and global bifurcation, for SHM have been studied [176]. Kerschen et al. [83] presented a



www.manaraa.com

21

review of nonlinear system identification methods. The authors concluded that due to the

highly individualistic nature of nonlinear systems, no general analysis method is applicable to all

systems in all instances. For nonlinear systems, analytical description is rarely possible. Hence,

there is a great need to develop a robust and less model dependent approach of damage diagnosis

in a complex nonlinear dynamic system.

Structural damage management systems based on system identification approaches can be

broadly classified into the following three categories: (a) nonparametric identification

approaches; and (b) parametric identification approaches. Nonparametric techniques attempt to

identify the functional representation of the structure without any priori assumptions of the

model's structure. Nonparametric models are described by curves, functional relationships, such

as neural networks, and tables. Nonparametric analysis methods applied to the area of damage

assessment are transient analysis, frequency response, correlation analysis, time-frequency

analysis, spectral analysis, and black box modeling. Frequency domain methods have been

widely studied for SHM applications and they suffer from the fact that they are limited to linear

systems. Worden et al. [176] presented a survey containing multiple applications of correlation

and spectral analysis in the area of nonlinear dynamics in structural health monitoring.

Correlation and spectral analysis can detect presence of nonlinear response, and cannot handle

non-monotonic nature of many nonlinear systems. Fassois et al. [52] presented a paper on timer-

series methods for fault detection and identification. Uncertainties are naturally taken into

account using time-series methods since they are data based rather physics based. Time-series

nonparametric nonlinear system identification for damage assessment include spectral models,

Hilbert transform, Huang-Hilbert transform, and stochastic subspace identification, among others

[83, 176,185].
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Frequency-domain nonlinear system identification methods include Volterra-Wiener series,

nonlinear normal mode (NNMs), and higher order spectra [82]. In the last decade, time-frequency

analysis has been shown to be an effective tool in studying nonlinear phenomena, especially

damage characteristics. As its name states, time-frequency analysis blends the frequency and

time-domain methods to offer "continuous" snapshots of nonlinear and nonstationary system

dynamics [122, 160,161,163,167]. Analytical approaches for time-frequency analysis include, but

are not limiter to, Gabor transform, Wigner-Ville distribution, Haar wavelet, short time Fourier

transform (STFT), Choi-Williams distribution, and multiple wavelet analysis methods [160,167].

The nonparametric approach can have general applicability without restriction on the system

input excitation and can effectively model structural nonlinearity.

Neural network (NNs) approaches for SHM relies on estimating the outputs and residuals of

the system response. Given the lack of comparative studies of NNs, Markou and Singh [108]

presented a guide to enable proper selection of neural network approach for its desired

application. Several studies have considered uncertainty in application of artificial neural

networks (ANNs) [8,55,132,139,142,179,194]. The noise rejection learning method proposed by

Matsouka [110] has been a popular method of considering uncertainties in ANN applications. In

the noise rejection method, certain amounts of noise are applied to the training data to consider

either modeling or measurement error. Bakhary et al. [8] studied the uncertainty generated from

errors in the finite element model and noises in the measurement data. The statistical approach

applied to the ANN assumes normal distribution and generated a probability of damage existence

by comparing model probabilities generated using Monte Carlo simulation. ANN do not quantify

the uncertainty involved in a process event, instead, they are used to filter out uncertainty.

Patton et al. [132] developed a neural network approach for multi-input and multi-output

nonlinear dynamic system where residual analysis is used to detect and localize faults. Work by
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Patton demonstrate that NNs are excellent for nonlinear systems, but with moderate noise

tolerance, extensive training sessions during design, complex implementation, and requires a

large amount of computation. Recently, Yang et al. [187] presented a neural network approach

for diagnosis of complex dynamic systems based on multi-sensor and multi-domain knowledge

fusion (MSMDK). By using the MSMDK model, fault decision uncertainty was reduced by

making full use of the sensor information and system knowledge. Yang proposed the use of

Dempster-Shafer evidence theory to reduce the conflict of different evidences by defining the

preference weight. The proposed approach was demonstrated via an experiment of the diagnosis

of a helicopter autopilot.

Primary strengths of ANNs are its application to problems with robustness, complex nonlinear

systems and on-line identification. However, the non-uniqueness of the neural network models of

the dynamics of systems is a major impediment in matching physical behavior with a change in

neural network parameters. Although NNs are very effective in identifying nonlinear

relationships, the reliability of the damage assessment remains questionable due to the errors in

the input modal parameters. Model updating would improve the modeling accuracy, but the

applicability of this process is rather limited due to complexity of real structures.

The problem of parametric model identification using dynamic data is a promising area in

various engineering applications due to its applications when structures are time-varying. In

practice, it is not possible to fully capture the dynamic characteristics of a structure via high

fidelity simulation models due to incompleteness in parameter and model uncertainty. Much

attention has been devoted to the identification of mass-stiffness and modal parameters of linear

systems under stationary input excitation. The linearity and stationary assumption is valid only in

small-amplitude (relative) and when Gaussian noise analysis is applicable. Methods based on

least-squares and Kaiman filter [26,96,154,186] have been proposed to estimate dynamics



www.manaraa.com

24

properties such as stiffness, mass, natural frequencies, modal damping, and mode shapes of

multi-degree-of-freedom (MDOF) systems.

In practice, stationarity is not always applicable, and nonstationarity analysis is required. For

the identification of time-varying structures and their variations due to damage, time domain

analyses have been used extensively, in particular, the methods of least-square estimation,

extended and regular Kaiman filters, adaptive recursive least squares (RLS) with constant or

varying forgetting factor and/or matrix [186]. The commonly used technique is the application of

a forgetting factor. The drawback of a constant forgetting factor is that if the forgetting factor is

small, it has a better capability of tracking parametric variation, but it is very sensitive to

measurement noises. But if the forgetting factor is too big, its tracking capability is compromised.

The application of forget matrix, in other words an individual factor per varying parameter,

attempts to isolate each parameter and its variation from the rest of the system, which allows for

detection and localization of damage. Furthermore, Smyth et al. [154] and Yang et al. [186] show

that the direct and simultaneous identification of stiffness and mass parameters requires the

acceleration, velocity and displacement measurements, which are rarely all obtainable or

available. Likewise, if displacement and velocity responses are derived through integration of

acceleration response, significant errors will result. These approaches can identify and track time-

varying system parameters; however, they are not very efficient when non-Gaussian uncertainties

are involved and require the availability of all DOF and state responses. Additional nonlinear

system identification approaches discussed in literature include the nonlinear auto-regressive

moving average with exogenous input (NARMAX) which is a generalization of the ARMA time-

series models [83].

In order to properly describe the uncertainties arising from measurement noise, modeling error,

data incompleteness, statistical methodologies based on Bayesian probabilistic inference have
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been developed. The advantage of Bayesian approach is that it follows directly from the

probability axioms and there are no ad-hoc assumptions that lead to loss of information. Multiple

works have been presented in the use of Bayesian inference to identify and update the

uncertainties in model parameters and model selection [12,26,79,119,189-191]. Model

identification and selection for both linear and nonlinear dynamic models have been studied in the

case of measured input and outputs and for the case of output only measurements. Katafygiotis

and Yuen [79] present a statistical model updating methodology based on modal identification

method. This study was limited with training data since it was based on benchmark study. When

noise was included, the results showed multiple false-positive damage locations. Yuen et al. [189-

191] presented a Bayesian approach for damage detection using output measurements only. The

method presented does not make any assumptions about stationarity of input excitation and signal

noise content, but it was limited to a numerical example.

Muto et al. [79] and Kerschen et al. [83] applied Bayesian inference and Markov Chain Monte

Carlo (MCMC) to identify the unknown probability distribution, which captures the uncertainty

of a parametric model and as a goodness-of-fit model comparison. These works have been based

on the quantitative expression of model parsimony, also known as Ockham' s razor, which states

that effective simpler models are to be preferred over unnecessarily complicated models. The

reason for such is that complicated models will tend to over-fit data and result in poor future

prediction performance. In addition, most of these studies have only been demonstrated with

numerical and experimental models that have limited degrees of freedom.

State estimation and system identification of nonlinear structures with non-Gaussian

uncertainties can be applied. However, this technique is computationally expensive and to reduce

this expense, significant experience is required to develop a simplified model that captures the

necessary system dynamics. Through comparative analysis, Ching et al. [26] demonstrate that
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Gaussian-based estimation and identification algorithms, such as Kaiman filter, are only

reliable for models that are almost linear on the time scale of the updating intervals, and when

applied to real structural data, their applicability and reliability is questionable.

The uncertainties associated with structural model predictions have a significant impact on the

decision-making process in structural health monitoring. System identification based on updating

finite-element models using system response data is challenging and computationally expensive,

however the large number of uncertain parameters associated with these models makes the

inverse problem extremely ill-conditioned. In addition, non-Gaussian estimation capability is

required in order to properly capture the uncertainty probability distribution. Direct calculation of

the probability density function of the model parameters allows for quantification of the

uncertainties of the parameter estimates. As stated by Ockhams' razor, simplified models are

required, but with appropriate model selection. In real world applications, complicated models

would require a large number of sensors and its data processing would be computationally

expensive.

While significant work has been done to understand the structural damage under external

excitations, little work has been done to understand damage characteristics under coupled loading

conditions, such as aeroelastic phenomena. Wang et al. [173] studied the aeroelastic

characteristics of a cantilevered composite panel. This paper investigated the effects edge crack

growth and location has on flutter and divergence speeds. The crack damage was assumed to

remain open; thus negating the nonlinear phenomena. This qualitative analysis demonstrates the

multiple difficulties involved when considering complex structural and loading conditions.

Furthermore, as pointed out by Worden et al. [176] nonlinear response contains nonuniqueness

ability, meaning that system responses will not vary monotonically. Therefore, the monotonicity
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of the structure in question needs to be well understood if required for damage assessment. As

a result, complex system dynamics often generates significant epistemic uncertainty in damage

assessment since understanding and predicting response of nonlinear systems - even when

undamaged - is a very challenging task. The stronger the nonlinear response is, the bigger the

lack-of-knowledge becomes. As stated in Worden et al, with the exception of the Holder

exponent example, all applications of nonlinear dynamics to SHM have been made at the

numerical and laboratory scaled experiments where system variability and system complexity

uncertainties are well controlled and limited. Furthermore, Kerschen et al. [83] points out most

nonlinear approaches assume a deterministic nature, and the degree of uncertainty is rarely

quantified, and the following fundamental questions need to be properly addressed: (1) Are the

experiments and simulations consistent statistically speaking?; (2) What is the degree of
confidence associated with the first answer?; and (3) If additional data sets are available, by how

much does the confidence increase? Nonlinearity and system complexity is a type of uncertainty

where there is not enough information, in other words it is an epistemic uncertainty.

2.2.2 Environmental Uncertainties

In practice, engineering structures are exposed to varying operational or forced and
environmental or natural conditions. In the structural health monitoring area, it has been widely

recognized that changes in structural response and/or behavior attributed to damage is difficult to

discriminate from those due to environmental and operational effects.

Considerable research efforts have been made to investigate the separability and/or filtering of

environmental variability from structural changes due to damage. Sohn [155] published a review

of the effects of environmental and operational variability on structural health monitoring. In this

survey, data normalization is determined as the primary path for filtering the unwanted effects of
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operational and environmental conditions. In civil engineering structures, numerous studies

[3,34,48,85,92,155,158] have been performed to determine the variability of modal properties of

the civil transportation and structural systems in consideration of different environmental factors.

The natural variability of the eigenfrequencies of bridges have been approximately determined to

vary 5-10% over a 24-hour period. Sohn et al. [158] proposed a linear adaptive model to

discriminate the changes of modal parameters due to temperature changes from those caused by

structural damage. Peeters et al. [138] proposed a methodology to detect damage in the presence

of varying environmental conditions using ARX models and confidence intervals.

Most of the work in accounting for environmental and operational effects during damage

assessment has been done via a data normalization scheme. Data normalization requires a

knowledge basis or training at all the normal conditions of the structure in question. Data

normalization methods include neural networks, dimensional reduction, novelty detection,

principal component application, and regression modeling, among others [97,155]. Balmes et al.

[9] proposed a nonparametric based on residual associated with a subspace identification

algorithm. In this study, temperature effects are accounted for by merging reference data sets

recorded at unknown temperatures. To deal with the uncertainties associated with varying

environmental conditions, Sohn et al. [158] proposed an outlier analysis approach based a neural

network trained with results of a nonlinear principal component analysis (NPCA) that determines

the distribution of certain identified structural parameters over an undetermined number of

environmental factors. Koo et al. [86] proposed an impedance-based SHM technique combining a

temperature compensation technique and outlier analysis. The compensation technique is based

on cross-correlation coefficient with an effective frequency shift, which is defined as the

frequency shift causing the concurrent impedance data to have the maximum correlation with the

reference-impedance data.
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Lopez et al. [95,97] presented a comparative study of linear and nonlinear dimensional
reduction techniques to normalize modal data of a deteriorating cantilever beam model under

temperature variations and artificial noise. The study demonstrates the importance of

dimensionality reduction techniques prior to proper classification of damage or undamaged data.
Manson et al. [106] studied the damage detection of composite panel under changing conditions

of humidity and temperature. In this study, the analysis was based on Lambs waves, PCA pre-

processing and outlier analysis. Piezoelectric (PZT) sensors used to generate Lamb waves can be

used as both exciter and sensory receiver, which provides the very important benefit of having the

capability of controlling the input excitation. Results of this study demonstrate that damage-
sensitive features are more sensitive to temperature in comparison to humidity, and emphasize the

need for normalization data which covers all normal operations of 'damage-free' structure.

Raghavan et al. [141] presented the use of the pulse-echo approach of guided-waves to study

damage detection at elevated temperature for space applications. Indentation damage detection

was possible at temperatures up to 800C, and thru-hole damage was achievable at all

temperatures, 2O0C to 15O0C. In this study, a search for temperature insensitive material

properties and simple signal similarity difference approach was used to perform outlier analysis.

Environmental factors can also have a significant effect on the boundary conditions of the

structure. Lew et al. [89] presented the use of feedback control to enhance the sensitivity of

natural frequencies to structural damage, while minimizing the sensitivity due to uncertain

boundary conditions. This study, however, assumes primary structure has or allows for a

secondary structure (up to 20% of primary mass) to act as passive controller, disregards any
effects the vibration control would have on the structural performance, and does not take noise

content into account. Moyo et al. [118] presented the use of Box-Jenkins modeling to assess and

separate the effects of operational anomalies, such as traffic, accidents and maintenance, from
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permanent effects originating from damage on a bridge. In this study, temporary structural

response anomalies, i.e. operational changes, were identified and separate from permanent

changes, i.e. damage.

2.2.3 Sensor Uncertainties

In the process of damage assessment, a very critical communication component is the sensor unit

and network chosen and designed for the monitored structure. The information provided by the

sensory system must be assessed under a complete understanding of the principles governing the

operation of the sensor and its physical and spatial limitations. Sensors imprecision and

uncertainty is an inherent property because they are subject to noise, which is a generic term

encompassing imprecise and/or unwanted behavior. The occurrence of sensor noise are poor

understanding of the principles governing the sensor behavior, a lack of understanding of the

environment, changing environmental and/or operational conditions, and tolerances within the

sensor, among others. Note to the reader, this section does not deal with the typical filtering, such

as windowing and sampling rate, of signal in order to remove noise. Due to its uncertain nature,

sensor data must be validated for damage assessment since high fidelity is required. Sensing

uncertainty may arise from non-permitted deviations due to sensing device, transducer, signal

processor, and communication interface, which may appear mainly as bias, drift, complete failure

and precision degradation.

Sensor or instrument fault detection and identification (IFDI) has been studied by numerous

researchers in multiple areas. Mehranboud [111] offers a detail review on the application of

Kaiman filters, parity relation, PCA, artificial neural networks (ANN) and Bayesian belief

networks (BBN) to detect and identify faults in sensors. Mehranboud' s work is based on BBNs

for dealing with uncertain knowledge on the reliability of sensors. In this context, the sensor
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becomes the structure under question for health monitoring. Furthermore, it is recognized that

simultaneous IFDI and structural damage assessment should be performed; thus, quantifying and

incorporating sensor uncertainty into the overall SHM process.

Often times, redundancy is included in sensor network design to make sure that sensor data is

available even when discrete sensor failures occur. Friswell and Inman [57] presented sensor

validation methods based on modal filtering as well as PCA residual analysis given the case of

data redundancy. For modal filtering, the analysis assumes low uncertainty in the modal

parameters. In a follow up work, Abdelghani and Friswell [1] presented a residual analysis

method for the localization of faulty sensors for additive and multiplicative faults in sensors. The

damage localization is based on a correlation index; however, the correlation index fails at

providing sensor fault magnitude. Thus; the deciding if sensor is faulty depends on user's

threshold or experience. Kerschen et al. [81] makes use of PCA for sensor fault detection,

isolation and correction. The procedure was experimentally evaluated using a beam under linear

and nonlinear behavior. Kerschen identifies that work needs to be done in separating sensor faults

from structural damage.

Ibarguengoytia et al. [74] presents an algorithm for sensor validation in real-time

environments. The algorithm is based on Bayesian networks and was applied to temperature

sensors from a combined cycle gas turbine for sensor fault diagnosis. A hierarchical process is

applied where one Bayesian network is applied for detection and a separate one for faulty sensor

isolation. Mengshoel et al. [112] applied Bayesian networks for sensor validation and diagnosis to

an electrical power system of aerospace vehicles. Dai et al. [29] proposed an adaptive distributed

coordination framework for handling sensor uncertainty. This approach is based on multi-agent

systems and rough set theory, an extension of set theory and similar to fuzzy theory. The
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framework offers a hierarchical approach to handle multiple types of sensor uncertainties via

data fusion techniques; however, demonstration of such framework was not provided.

Goebel [61] studied fuzzy logic to achieve sensor validation by expressing a confidence for a

given measurement based upon an expected value, the system state, the environmental conditions,
sensor reliability, and physical limitations of the system. In this work, uncertainty management is

achieved via validation of sensor readings, sensor fusion, and sensor diagnosis. Sensor validation

and fusion are addressed by probabilistic, fuzzy and neural networks, while sensor diagnosis was

addressed via fuzzy theory. Guo et al. [62] proposed a framework for sensor validation in

classification problems based on evidence theory. The proposed evaluation framework is applied

to a target classification of moving vehicles using acoustic, seismic, and infrared sensors.

Significant progress has been done in addressing sensor placement in the area of SHM.

Because sensor placement is essentially an optimization problem and not uncertainty problem,

only a few sensor placement papers address the issue of sensor related uncertainty for structural

damage applications. Guratzch [66] proposes a methodology for sensor placement optimization
for SHM under uncertainty. This methodology was numerically evaluated using stochastic finite

element models to generate random uncertainty levels. Optimal sensor placement was derived

from probabilistic and reliability-optimization analysis of model responses. Guratzch points out

that proposed approach is computationally expensive due to the optimization of stochastic finite

element models. In addition, the study provides optimal sensor placement but no validation with

experiments. For further information, Staszweski and Worden [164] present an overview of

optimal sensor placement methods for damage detection applications.

When dense sensor networks are utilized, wireless communication becomes attractive since

electrical wiring is practically eliminated or centralized. Promising research area is that of 'smart'
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sensors. Nagayama [120] studied the application of smart sensors in SHM. Smart sensors are

designed with the following capabilities: signal pre-processing, such as measurement of multiple

physical quantities and data compression; low- or self-power feature; and self-organizing

collaborative capability. Giurgiutiu et al. [60] present a brief review and application of embedded

PZT in which sensors act as a receiver and actuator. The sensor-actuator approach enhances the

control over the damage-sensitive feature being extracted from acquired signal. In this study, it is

identified that work is still required to account for operational and environmental variations in

order to reduce uncertainty affecting the damage diagnosis. For practical implementation of smart

sensors, several challenges, such as data loss, time synchronization errors, scalability, sensitivity,

communication range, and power limitations, must be overcome.

2.3 Essential Concepts in Information Processing and Pattern Recognition

Damage detection and assessment is fundamentally a correlation problem between known

healthy structural response data and unhealthy structural response data. Because of the

uncertainties that exist in the damage assessment process, which causes noise content to be at the

same or greater level than the change or anomaly caused by damage, the damage assessment

problem has been identified essentially as a pattern recognition problem [51]. As such, the

discussion and work presented in this dissertation will contain multiple terms normally used in

signal processing and computer science algorithms research.

The following terms are defined below:

- features: individual measurable or identified properties of the phenomena being observed. For

structures, features can be natural frequencies, damping properties, stiffness, etc.
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- dataseis: matrices in which the columns represent the measurement sample and the rows

represent the features, class memberships, or other fixed sets of properties.

- mappings: transformations operating on datasets. For example a projection from 3D to 2D.

- dimensionality reduction: process of reducing the number of random variables under

consideration, which is divided into feature selection and feature extraction.

- feature selection: process of finding a subset of the original dataset, which provide relevant

information for the a desired task.

- feature extraction: transformation of initial data into a reduced representation set of features,

which are expected to contain the relevant information from the initial data in order to perform

a desired task.

- class or pattern: groups of measurement or observations defined by on a priori knowledge or

on statistical information extracted from the patterns.

- classification: task of generalizing known patterns or classes to apply to new data. For

example, in damage detection, a classification algorithms attempts to properly allocate new

measurement data to undamaged or damaged classes.

- data fusion: use of techniques that combine data from multiple sources and gather information

in order to achieve inferences, which will be more efficient and potentially more accurate than

if they were achieved by means of a single source.

For recognizing the classes of objects or structural response data, the structure is first measured

by sensors. The raw measurement data is then represented in a feature space, and after some

possible feature reduction steps, the measurement samples are finally mapped by a classifier on

the set of class labels, i.e. damaged or undamaged. From the initial raw-data representation in the
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feature space, and this final mapping on the set of class labels, the representation of

measurement samples may be modified and transformed multiple times, such as: data

transformations (time to frequency domain), simplified feature spaces (feature selection),

normalization of features (scaling), linear or nonlinear mappings (feature extraction),

classification by a possible set of classifiers, and final damage diagnostics decision.

2.4 Information Processing for Diagnostic Decision-Making

Different preprocessing techniques for handling measurement error, noisy data, and data

transformation and compression exist. Multiple reviews concerning the application of

advancements in signal processing to damaged structural response have been published, as

reported in [52,122,163]. Most signal processing techniques for damage detection rely on Fourier

analysis for time-invariant stationary problems, and time-variant methods, such as wavelets, time-

frequency and time-series analyses.

Staszewski [162,163] has written multiple review papers discussing the usage of time-variant

analysis in damage assessment. Time-frequency methods include, but are not limited, short time

Fourier transform (STFT), Wigner-Ville distribution (WVD), Choi-Williams distribution (CWD),

among others. Staszewski states that the major difference between each time-frequency method is

the way that it handles the problem of uncertainty. Staszewski [162] and Taha [167] present a

review of wavelet analysis for damage assessment. Wavelets serve as time-varying analysis tools

suitable for decomposition, compression and feature selection. Well known wavelet methods

include continuous, discrete, and multi-resolution wavelets. Wavelets are also subject to the

uncertainty principle. In the case of wavelets, Staszewski marks the difference between time-

frequency representations and time-scale representations, i.e. wavelets. An important usage of

time-variant methods is its application to nonlinear and non-stationary signal response analysis.
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In general, time history response from sensors can be analyzed as is or can be transformed to

frequency or time-frequency domain. Fassois et al. [52] presented a review of time-series

methods for fault detection. Fassois argument that for linear systems there is little information

loss between time and frequency domains. Further feature extraction, such as modal properties

from frequency response data, inevitably results in loss of information since the tails of data range

are usually discarded and it's contaminated by error propagation. Time-series analysis uses

statistical tools for developing mathematical models describing one or more measured stochastic

signals and analyzing their observed and future behavior. Furthermore, Fassois states that time-

series methods account for uncertainty since they are data-driven based rather than physics based.

But it must be also recognized that uncertainties are present and need be quantified even for data-

driven methods, and that statistical methods are not always sufficient to account for and quantify

the related uncertainties.

2.4.1 Feature Extraction and Selection

Subsequent to data pre-processing is the data mining process, whose main purpose is to discover

the hidden knowledge and patterns within data, which may be applied for information

management, optimization purposes, decision support, and process control. Critical to the

objectives of data mining is the generation of quality data, which facilitates the decision-making

in the assessment of structural health. Given large sets of data with multiple features, there exists

significant amount of redundancy or unnecessary features which reduces the effectiveness,

accuracy, and understandability of the data mining results. As such, data compression and

dimensional reduction techniques may be utilized to reduce the size of datasets. One must

understand that uncertainties will arise from the way data is truncated and compressed during the

removal of unnecessary data features, feature extraction, feature selection and noise cleansing.
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Uncertainties are inevitable, but they can and should be systematically addressed and

accounted for.

In general, data mining must performed in order to facilitate the decision-making process of

classification. The performance of the classifier depends on the interrelationship between

datasets, number of features, and classifier complexity. Increasing number of data and dimensions

results in what is known as "curse of dimensionality," which leads to the "peaking phenomenon"

in classifier design [87]. In other words, more data does not necessarily mean more information

due to the dependency and correlation of many multidimensional dataset. Jain et al. [75] states

that increasing number of features may in fact degrade the performance of a classifier if the

number of training samples that are used to design the classifier is small relative to the number of
features.

Due to the complexity and high dimensionality of dynamic response data, the simple binary
classification (detection case) of structural health into damaged or undamaged categories is not

always clear. To perform binary classification, a pattern needs to be identified among signal
features. In real-world data, these patterns are scattered in high-dimensional and very often

nonlinear subspaces.
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Figure 2.2. Taxonomy of dimensional reduction techniques [100].

Dimensional reduction simplifies the pattern representation and reduces the computational

effort required from classifiers [94,98]. Dimensionality reduction can be defined as follows.

Given a measurement matrix Xe 9\??ß consisting of M data vectors and D features, dimensional

reduction techniques transform dataset X into a new dataset YeSRMxd , where d<D , with

minimal loss of data geometry. Figure 2.2 shows taxonomy of techniques for dimensional

reduction, where the main distinction is made between linear and nonlinear methods

[75,98,101,107,115].

The best known feature extractor is the principal component analysis (PCA) or Karhunen-

Loeve expansion that computes the m largest eigenvectors of the d \d covariance matrix of the

? d-dimensional patterns. PCA has been used as feature extractor, selector, data compressor and
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data clustering technique. Other methods, like nonlinear-PCA, KPCA, factor analysis (FA),

projection pursuit, neural network based mappings, among other nonlinear mapping techniques

have been used for feature extraction and clustering in damage assessment studies [76,

95,98,107,175,177,182,183]. Lopez et al. [95,98] presented a comparative study of dimensional

reduction methods for damage detection applied to an aeroacoustic experiment. Results of this

study demonstrate that nonlinear dimensional reduction techniques can be more effective than

PCA in cluster analysis for damage detection, but not consistently and PCA tends to be more

robust to lack of excitation. In the reviewed literature, limited studies have been published in

using nonlinear dimensional reduction methods for SHM research.

Feature reduction can also be achieved via selection of features based on theoretical and/or

practical engineering knowledge. The problem of feature selection is defined as follows: given a
set of d features, select a subset of size m that leads to the smallest classification error. Feature

selection methods that have been applied in SHM include branch-and-bound search, sequential

forward selection (SFS), and sequential backward selection (SBS), [75]. Other works include

similarity based feature selection methods. Mitra et al. [115] present an unsupervised feature

selection using feature similarity and a brief review of feature selection methods. A more detailed

explanation and review of these methods can be found in [75,101].

In general, different dimensional reduction and selection approaches will generate different

feature spaces, and consequently result in different concept spaces and discovering different

knowledge spaces. Feature extraction and selection is critical in the area of damage assessment.

In general, these data mining techniques are based on methodologies of machine learning, pattern

recognition, and statistical analysis. Given that the user is not clear on the properties of the

damage knowledge that is of interest, the adoption of mining algorithms will be uncertain. The

aim of applying data mining techniques in diagnostics is to provide the user with novel, useful
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knowledge, which can be easily understood and evaluated in order to make decisions quickly

and precisely.

In system diagnostics, it is desired and necessary to properly induce and reduce the acquired

knowledge, and describe it in a way that can be easily understood and classified. Given that data

mining has been performed, the next step is that of evaluation and explanation of discovered

knowledge, in our case damage assessment. One major problem in knowledge explanation is to

account and describe the uncertainties in qualitative concepts and how to implement the

uncertainty transformation from quantitative data to qualitative concepts. Therefore, there are

uncertainties not only in the process of data mining, but also in the discovered structural health

state knowledge.

2.4.2 Classification Techniques

Classification is the most fundamental and most significant activities in SHM research activities.

Classification is applied to describe the known data classes or models of concepts, so as to

classify the objects with unknown class index by the known models/classes. As a supervised or

unsupervised learning method, classification contains uncertainties. Complex classifiers are

needed when the object to be classified is adjacent to two classes, or lies in the overlap region of

multiple classes. In addition, if insufficient training is performed, the learning result will probably

not be reflective of the overall structure of the data set, and therefore, will not categorize the

damage state correctly, which for new data, there will be a lot of uncertain problems in its

classification. Many classification approaches have been used and proposed for classification of

SHM data, such as similarity metrics, decision tree induction, Bayesian-based classification,

neural networks, genetic algorithms, fuzzy set classifiers, and so on [101]. The most general and

well known of performing classification in damage assessment process is via direct statistical
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analysis. Most of the initial work in diagnostics focused in applying statistical analyses, as

reported and/or reviewed in [70,101,155,158,168,169-171,177].

Given a set of vectorsX = (x,,x2,...,xrt) with d extracted features, the decision-making

process in pattern recognition is based on assigning these vectors to one of the possible

CIaSSeSC = (C15C2,...,^). A decision rule partitions the measurement space into Nc
regions Q1, i = l,2,...,Nc. Each region may be made up of multiple overlapping regions. The

boundaries between the regions are the decision boundaries or decision surfaces. In terms of

damage diagnosis, the overlap of these regions, in other words health states, are the highest

proportions of misclassifications or false-diagnosis. In general, two decision-boundary methods

exist in classification. The first assumes knowledge of the underlying class-conditional

probability density function, which in many situations this will be unknown and must be

approximated. The second approach develops decision rules that use the data to estimate decision

boundaries directly, without explicit calculation of the probability density functions. Consider the

binary hypothesis testing problem where a sequence of independent identically distributed

damage index vectors are observed, then the likelihood ratio test (LRT) function is denoted as

m ^

ftL(xk) T{m) (1)
k=i <

where HD denotes the damage state, Hv the undamaged state, and t{p?) is a predefined (if prior

information exists) damage threshold.

A major issue in damage classification is that many classification algorithms assume that for

training, class labels, i.e. information on each class, are available, but in practical damage

assessment applications, labels of damaged data is not available unless destructive testing is
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performed. As a result, direct application of supervised classification approaches is not always

possible. Figure 2.3 shows the taxonomy of classification methods [101]. Clustering methods

aims at finding groups in data via feature similarity. Although clusters are important in pattern

recognition, because in SHM we are interested in classes with labels, clustering will not be

covered in this paper. Structural classifiers are used for building classifier ensembles. Structural

classifiers are usually described in graph, network, or membership terminology. Structural

classifiers are becoming important and continuously growing as the demand for more robust and

more accurate classification decisions are required.

In particular, classifier combination is highly justified as the next logical step in increasing

decision knowledge. Comparing classifier combination to feature extraction, prior to extracting

the most informative features, data is integrated as a single set, and then transformed to a lower

dimension. Given that we can combine multiple classifiers, the next logical step will be to select

the most effective classifier set. In the following paragraphs, we explore the multiple applications

of classification methods in SHM.
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Figure 2.3. Taxonomy of classifier techniques [100].

Neural networks (NNs) have been extensively applied for feature extraction and classification

of structural health data. Zang et al. [194] performed structural damage detection via artificial

neural networks (ANNs) compressed by PCA. The integration of ANNs with PCA allowed for

reduction in FRF data, i.e. reduction of computational expense, without loss of accuracy. The

author states that pattern recognition and system identification are complementary; thus,

indicating that methodologies should be fused for maximization of damage knowledge. Niu et al.

[125] presented a comparison study of classifiers for fault diagnosis of a motor using multi-type

signals. The study used the following classifiers for comparison: support vector machines

(SVMs), linear discriminant analysis (LDA), k-Nearest Neighbors (kNN), random forests (RF),

and adaptive resonance theory-Kohonen neural network (ART-KNN). The study demonstrates



www.manaraa.com

44

that individual classifier performance is highly dependent on the damage scenario (binary to m-

ary classification). Critiques of NNs point out that this approach conceals important information,

such as data statistics, from the user and tend to be computationally expensive. Jain [75] states

that despite these issues, NNs do offer several advantages, such as unified approaches for feature

extraction and classification, and flexible procedures for finding good, moderately nonlinear

solutions.

One of the most interesting developments in classifier design is the introduction of the support

vector machine (SVM). Cao [20] used SVMs to develop a framework of probabilistic uncertainty

modeling and reliability analysis and compared to Monte Carlo simulation method, first and

second order reliability methods. In this work, uncertainties due to system lack-of-knowledge and

human induced factors were studied as random variables with normal distributions. Using SVMS,

accurate results relative to Monte Carlo simulation method were obtained with much less training

data. Das et al. [30] used one-class SVMs based on time-frequency information for damage

assessment of composite panels. One-class SVMs are useful for outlier detection when data is not

available on damaged states. Das points out that further research is necessary in order to increase

robustness of classifier in the presence of material and experimental uncertainties.

In diagnostic systems, knowledge from domain specific experts is usually inexact and

reasoning on knowledge is therefore imprecise. Thus, measures of uncertainties in knowledge and

reasoning are required for classification and decision-making to provide more robust damage

assessment results. As stated previously, commonly used uncertainty measures are probability,

fuzzy member functions and belief functions. The performances of statistical pattern recognition

methods depend on the prior knowledge, which is often imperfect and incomplete. Probability

theory can handle the uncertainty contained in the data, but it cannot treat the imprecision. The

imperfect knowledge can be addressed by the use of belief- and/or evidence-based methods. The
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problem of uncertainty in classification for damage assessment can be addressed by a

continuous learning in order to add information carried by each new classified pattern to the

database or prior knowledge.

Fuzzy-sets classifiers assigns degrees of membership in several classes to each input pattern.

Fuzzy-sets theory was introduced by Zadeh to solve the problem of data imperfection. Ramu and

Johnson [142] integrated ANNs and fuzzy logic to treat uncertainties related to damage

assessment of composites. They point out that appropriate network construction is extremely

heuristic and laborious. Altunok et al. [5] presented a damage pattern recognition approach based

on fuzzy set theory. The proposed method does not assume any special statistical assumptions

and does not require finite element modeling and was tested on an experimental model steel

bridge. One drawback to this method is that damage quantification is as accurate as the number of

sets chosen, which can be insufficient or rough.

Lei et al. [88] presented a clustering technique based on fuzzy c-means (FCM), PCA and

compensation distance technique for rotating machinery. The features selected for clustering

analysis are based on the characteristics of statistical-moments. Pierce et al. [140] applied MLP

neural network classifiers to a damage detection problem within a framework of an interval

arithmetic-based information-gap technique. The inclusion of interval analysis allowed the

assessment of robustness of trained classifiers to uncertainty. DeSimio et al. [35] studied the

effects of uncertainty via statistical classification in decision-making for SHM systems. Loose

bolt damage assessment was performed on a composite thermal protection panel. Feature

selection via sequential forward greedy approach is discussed and applied. Uncertainty analysis

was limited to defining rejection criteria for classification of anomalous data, so when uncertainty

is high and labeling is not clear, data is discarded. The latter approach relies on significant

training data being available. Altunok et al. [5] presented the use of possibility distributions to
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quantify healthy and unknown events, in other words outlier detection, to an ASCE benchmark

problem. By applying possibility theory, the authors observe intervals without assuming any

particular probability distribution.

Chandrashekhar et al. [24] proposed a fuzzy logic system for damage detection and isolation in

beam structures with uncertainty. Taha and Lucero [166] applied fuzzy-sets to develop a damage

metric combined with Bayesian updating scheme. Da Silva et al. [28] demonstrated an approach

to vibration-based damage classification via fuzzy-sets. Pawar and Ganguli [135] developed a

genetic fuzzy system and applied it for damage detection in beams and helicopter rotor blades.

The genetic algorithm facilitated the selection time and optimality of fuzzy-sets. Application of

fuzzy-sets and possibility has also been applied to fault diagnostic systems, such as satellite fault

diagnosis [23], and rotating machinery fault diagnosis [78].

Structural design problems have been investigated via fuzzy-logic and evidence theory by

multiple researchers, such as Nikolaidis et al. [124], Mourelatos et al. [117], Bae et al. [6,7], Yang

et al. [184], to handle imprecise data situations arising from structural complexity. In particular,

evidence theory has been used by multiple researchers for data-fusion applications. Bao et al. [10]

employed D-S theory to combine evidence individual damage basic probability assessments from

multi-sensory data. Such combination improved the damage assessment results in comparison to

individual sensor damage assessment results. Guo and Zhang [63] used the D-S theory to identify

multiple damage locations of a structure. They made use of Yager's weighted D-S theory

approach to address the fact that different sources have different levels of importance and/or

reliability. Li et al. [90] used the Shannon entropy to measure the uncertainty of the evidence and

presented a weighted and selective fusion method by using an artificial neural network combined

with D-S evidence theory and Shannon entropy. Basir and Yuan [11] performed engine fault
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diagnosis based on multi-sensor information fusion using D-S theory. In particular, they

focused on the combining schemes for evidence sources to address conflictive information.

Denoeux [32,33] developed an adaptive neural network classifier and a k-nearest neighbor

classifier based on D-S theory. Denoeux points out that D-S theory is suitable for classifier

combination, since it yields robust decisions procedures to changes in environment and possible

sensor failures. Parikh et al. [130] made use of D-S theory and predictive rates for combining

classifiers in a case study of thermostatic valve faults in a diesel engine cooling system. By using

D-S theory base approach, the authors were able to properly classify multiple engine conditions.

Results from the multiple classification comparison studies demonstrate the need for classifier

combination or fusion schemes since it can be unpredictable which classifier will be the most

effective on a case-by-case basis. Classifier combination aims at integrating the benefits of

individual classifiers to maximize performance robustness; thus, reducing uncertainty in the

classification outputs.

2.4.3 Data Fusion and Decision-Making

Due to uncertainty and imprecise nature of data acquisition and processing, individual

informational data sources must be appropriately integrated and validated. To maximize

diagnostic performance, data must be processed and contextually filtered to extract valuable

relevant information. In terms of diagnostics, data fusion can be used at the feature and decision

levels. Data fusion can be used to combine information from a multi-sensor arrangement to

validate signals and extract damage sensitive features. System sensory data is generally processed

to extract damage signature features, which can then be mapped to different health condition

states. In the multisensory approach, individual sensory data may be classified and contribute a

unique set of classifications represented by measured of belief or probability, which can be
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numerical or of symbolic nature. The representation as numerical classification degrees lead to

a quantification of its uncertainty content or incompleteness. Due to the less than unity

classification, classified features when combined, provide a better estimate of the true diagnostic

state. In terms of decision-level data fusion, the main task of data fusion is to combine

information from several sources to make a better decision compared to decisions based on a

single data source. The goal of data fusion is to reduce imprecision and uncertainty by increasing

information completeness [67].

Various techniques exist for performing data fusion. To discriminate between feature-level and

decision-level data fusion, we will focus on ensemble classifiers as the main feature-level data

fusion approach, and inference engines as the decision-level data fusion approaches. Figure 2.4

shows a sample architecture for data fusion based on the distinction between feature-level and

decision-level fusion. The final goal of condition monitoring and diagnostics is to make

diagnostic decision under uncertainty and impreciseness. To distinguish between inference and

decisions, we use the following definitions. Inference is the process of drawing conclusions from

premises or evidence, and decision is the process of choosing an action. As stated in Walley

[172], inference is more theoretical and impersonal, while decision is a more practical and

specialized activity since it has practical consequences and it requires consideration of these

consequences and their values. Inference engines include Bayesian networks, Dempster-Shafer's

evidence theory, fuzzy sets, amongst others. Inference systems combine evidence to assess

probabilities or possibilities of relevant events, in our case damage states.
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Figure 2.4. Architecture of multi-source and multi-classifier information fusion.

Kuncheva [87] defines these outputs in four categories:

Type 1 - Abstract Level: Each classifier K1 produces a class label L. . At this level, there is no

information about the certainty of the obtained labels (condition), nor are any alternative labels

suggested.

Type 2 - Rank Level: Each classifier K; produces alternative class labels L- ranked in order of

plausibility of being the correct label.

Type 3 - Measurement Level: Each classifier K; produces a d -dimensional vector,

[Kn,...,Kid] consisting of values KUj representing the support for the hypothesis that the given

measurement comes from class c . .

Type 4 - Oracle Level: The output of classifier K; for a given measurement is only known to

be either correct (value = 1) or wrong (value = -1). The oracle output is artificial since it can only
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be applied to a labeled data set. So, for a given labeled dataset, the classification of correct or

wrong pertains to having the correct label on the data vector.

To this we add an intermediate classifier output:

Type 3.5: Imprecise Level: Each classifier K; produces a ¿-dimensional vector,

[{? ,? }>···>{£ ,?. }] consisting of values Ki¡ and Tc1 } representing the lower and upper

probabilistic support, respectively, for the hypothesis that the given measurement comes from

class Cj . The inclusion of this level is to acknowledge the existence of imprecise probabilities as

outputs from inference engines, such as Dempster-Shafer approach.

The possible ways of combining the outputs of multiple classifiers or information sources in

data fusion depends on what type of information is extracted from the individual classifiers. Some

of the well know classifier combinations are product rule, sum rule, majority vote, Naive Bayes

combination, Singular Value Decomposition (SVD), neural networks, adaptive weighting,

bagging and boosting. Jain [75] provides a review of classifier combination schemes and their

selection process. Bloch [15] presented a classification of numerical fusion operators with respect

to their behavior in terms of severity or indulgence. A number of researchers have reviewed the

multisensor fusion algorithms, architectures and application to diagnostic systems. Kuncheva's

book [87] on combined classifiers offers a great review of multiple classifier fusion approaches.

Hall and Llinas [67] have edited an informative handbook of multisensor data fusion. Luo [102]

reviewed the multisensor fusion and integration focusing in sensor technology development and

varying applications, such as robotics, biomedical and equipment monitoring.

Byington [18] addressed false alarms originating from faulty sensor performance, transient

operating conditions, improper damage indicator selection and logic by performing feature-level

and decision-level data fusion. Vachtsevanos et al. [168] provides an overview of data fusion
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applications in fault diagnostics and prognostics. To date, the great majority of data fusion

works in diagnostics have focused on the Bayesian approach. Basir [11] performed engine

diagnostics based on the D-S evidence theory with decision-making rules. Fan [45,46] conducted

a two part study using fuzzy membership functions and conflict factor in conjunction with D-S

evidence theory to perform gearbox fault diagnosis. The proposed method was used to resolve

conflicting information from multisource information by embodying uncertainty and expert's

subjective knowledge in decision-making. Li [90] developed a weighted and selective diagnostic

fusion approach by combining artificial neural networks, D-S evidence theory and entropy

information.

Data fusion studies comparing D-S evidence theory, Bayesian probability fuzzy sets, etc. have

been performed [15,16,78,124,127,144,150,159]. Nikolaidis [124] compared Bayesian theory and

possibility theory in terms of fuzzy sets to study reliability assessment for designing against

catastrophic failure. The main conclusion was that both methods are useful when used in parallel

since big discrepancies between their results might be an indication that design analysis problems

exist. Osegueda [127] enhanced probabilistic data fusion with D-S evidence theory in testing

structural integrity of aerospace structural components. One problem that needs considerable

attention is that of performing multisensor data fusion under imprecise information. Multisensor

fusion often requires exact information about the sensed environment, but in real situations,

information about the sensed environment is often imprecise and scarce. Soundpappan [159]

compared evidence theory and Bayesian theory to model uncertainty and assess the safety of a

system when information is of interval type. Because the study was performed for interval

probability bounds, the performance was biased for the evidence theory since it focuses in dealing

with imprecise probabilities. Given that interval gap are relatively small, then Bayesian theory, as

it's well known, will provide a better decision result.
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Given that diagnostic decision problems relate to uncertain events, it is generally acceptable

that quantification of expert opinions about the occurrence of these events should be in terms of

probabilities or related concepts. An expert system consists of two parts, as given by the

following equation [172]

Expert System = Knowledge Base + Inference Engine (2)

The knowledge base consists of the domain specific knowledge of the problem, and the

inference engine, as previously described, processes the acquired data and encodes it according to

the knowledge base. An inference engine also improves the knowledge in light of new

information, and thus, facilitates learning. Expert systems are designed to act as consultants by

replacing or enhancing domain-specific human knowledge. Types of expert systems can be
classified into diagnostic trees, rule-based systems, fuzzy logic, certainty factors (CF), rough sets,

Bayesian networks, and probabilistic logic [136,172]. Procedures for dealing with uncertainty and

imprecision are essential requirements for expert systems. In situations where uncertainty,

imprecision, and contradictory information exists, the usage of opinions elicited from domain

specific expert systems is a way of complementing such lack or imprecision of information.

Generation of expert opinions can be done qualitatively or quantitatively. In the quantitative

form, the expert may provide opinions as numeric according to the uncertainty theory that will be

used to represent available information. In the qualitative form, experts expresses opinions in a

natural way deferring the use of numeric representation. For example, an expert diagnostic

system might require the faulty features or symptoms, operational information, and other relevant
context information, and would utilize this information to search the knowledge base to determine

the corresponding diagnostic condition. An expert system does not only manage large quantities

of data and sources, but it also manipulates the information, such that the result is intelligent and
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has significance in order to respond to questions that are not completely specified. For further

details on expert systems please refer to [67,136,172].

The end goal for aggregating information is to generate diagnostic decisions by assessing the

uncertainty levels an utility information. The decision problem can be decomposed by specifying

a set of possible actions or outcomes, and assessment of the available information supporting

each outcome. The decision process determines preferences between actions, reduces the set of

actions from which you must choose, or may result in the requirement of acquiring additional

information. Multiple works related to decision-making under uncertainty have been made

recently with some application to machinery and aircraft diagnostics [41,42,70,76,121,180]. The

overall trend in aircraft structure and overall system diagnostics is the emulation of natural

intelligence by incorporating declarative actions involving expert decision-making, incorporation

of system modeling, and completeness in contextual information identification.

2.5 Discussion

Structures in non-laboratory conditions or highly controlled manufacturing environments exhibit

higher and different levels of uncertainty that are hard to manage. Damage assessment methods

rely on model-based system identification approaches, which assume linearity, stationarity, and

observability. The epistemic and aleatory uncertainty sources violate these fundamental

assumptions of system identification techniques. Data-driven methods have been developed to

mitigate these shortcomings of model-based methods. However, data-driven methods face a

major challenge in performing damage localization and assessment due to the limit on model-

knowledge. While several examples of influential studies focused on damage assessment under

aleatory uncertainties, such as random varying conditions, and nonlinearities of structural systems

exist, the reliable implementation is still plagued by epistemic uncertainties. Structural damage
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assessment is required to improve knowledge of structural reliability, but partial answers can

only be provided under partial information. The task of properly addressing and quantifying

accurate estimates of the structural system reliability remains to date a major task given aleatory

and epistemic uncertainties.

Multiple methods based on "robust" approaches have been developed and published for dealing

with damage assessment uncertainty. The great majority are developed by combining diverse

technical knowledge from structural dynamic models, controlled experiment assumptions, data-

driven (pattern recognition, data-mining, machine learning, neural networks, etc.) algorithms, and

domain specific knowledge. The level of information regarding method's limitations and

challenges remains, to this date, somewhat limited. There are no guidelines in the current

literature as to when vibration-based damage assessment methods are applicable and desirable.

Guidelines in deciding this and which specific damage assessment method could be used with

confidence would be very useful. It is important to recognize that not all applications are in need

of such, but numerous applications, such as those requiring high levels of precision and under

increasing structural complexity, do require more specific information on method's applicability.

Randomness

Imprecision ? agueness

Aleatory
Epistemic

Figure 2.5. Uncertainty types.
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Table 2.1. Uncertainty sources in structural condition assessment.

Parametric

Boundaries

Non-isotropic

Nonlinearities

Uniqueness

Environment

Measurement

Excitation

Equipment

Inaccuracy in finite element model discretization. Difficulty in obtaining a representative
structural model is highly dependent on minimizing the unknown parameters, which are described
below. Parametric uncertainty is perhaps the most widely studied type of uncertainty.

Numerous structures have unknown and unobservable boundary interfaces that are often non-
stationary. Structures exposed to varying environment tend to change boundary conditions due to
pressure, temperature, and moisture.

Variations in materials properties. Structures composed of non-metallic materials, such as
composites and ceramics, can vary significantly from member to member. In addition, failure
prognosis of non-metallic materials are not always well understood.

Structural systems exhibit nonlinear behavior under changes in operating conditions. Examples of
nonlinear behavior are material yielding, hysteresis, local instability, interface friction, hardening
and softening material behaviors. Numerous damage assessment methods depend on the
assumption of linearity, especially those based on modal analysis.

Numerous structural systems, such as bridges and satellites, are custom-designed for specific
applications and their mechanical behavior are strongly affected by events during and immediately
following their construction. Training data for understanding structural response under varying
conditions might be limited due to uniqueness.

Structural systems are often exposed to extreme environmental conditions, and unknown or
unforeseen operational conditions. Structures, such as satellites during vehicle launch, are exposed
to non-stationary excitations. For example, the simple interaction of temperature and humidity
effects with rate changes is highly complex, which may lead to structural intrinsic forces inducing
changes in boundary and continuity conditions.

Arises during the actual measurement process, which may be due to noise factors, such as thermal
instability, faulty sensors or equipment, and signal processing errors. Measurement errors can
becomes the major problem when measurement data is taken as the indisputable truth.

Numerous approaches rely on persistency and consistency of excitation.

Limited measurement points and access to critical structural components can result in
immeasurable critical modes.
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2.6 Summary

In this section, we reviewed issues and challenges facing the diagnostics research area in terms of

the associated uncertainties. Statistical pattern recognition techniques can be very useful and

extremely effective for well defined types of problems, but their effectiveness is very much

limited by the quality and representation of the data from which it is trained. Emerging

developments in data mining techniques have extended the capabilities of statistical pattern

recognition and machine learning approaches. With the developments in sensing and data

collection hardware, also comes increases in databases volume; therefore, in order to separate the

'bad' data from the 'good' data, data mining techniques are necessary and very important tools in

the area of structural health monitoring and management. Data-driven techniques are also

dependent on the quality and representation of the training data. Model selection, feature

extraction, feature selection, and classification remain critical components that need to be

addressed and optimized under imprecise information and uncertainties. To reduce uncertainty in

the diagnosis process knowledge must be maximized via integration of various information

sources.

The world we live is not deterministic. Physics-based models can only be used up to certain

accuracy. Even if we had all the time to collect and re-collect data on a given system, it would be

impossible to collect all the information needed to predict all possible phenomena. As such, data-

driven techniques have clear limitations as well. No single method is capable of being the best

solution in all situations; therefore, the strengths of multiple methods must be integrated

intelligently to the appropriate flight vehicle damage management systems. In order to address the

issue of uncertainty, contextual information, knowledge, and experience must be well

incorporated into the flight vehicle structural health management.



www.manaraa.com

57

Chapter 3

Diagnostic Reasoning under Uncertainty

This chapter introduces some techniques which may be used to model uncertainty in diagnostic

reasoning. For humans, reasoning about the physical world appears to be qualitative and heavily

dependent on causality. In the artificial intelligence (AI) research area, specifically mathematical

logic, reasoning can break down when trying to come in grips with causality. Human reasoning

methods break down when trying to come in grips with numerical aspects of uncertainty. Thus, a

computational method incorporating numerical uncertainty and causality is desired when making

critical decisions under uncertainty. The second half of this chapter is devoted to the principles of

Bayesian Networks (BNs) and Dempster-Shafer evidence theory, which in this dissertation, has

been selected to develop a diagnostic reasoning approach under uncertainty.

3.1 Coping with Uncertainty

Uncertainty is intrinsically joined to diagnosis. When a medical doctor asserts which was the

cause of the symptoms in a patient, the physician is never completely sure about the diagnosis -

sad but true. Uncertainty is ever present in all terms that consist of reality. In our daily lives, take

language for example, we make vague statements, such as "probably," "maybe," "more or less,"

as well as others, and leave the decision-making to the intelligent agent - person receiving vague

statement - to perform reasoning under such uncertain terms. In structural diagnostics, there are

different sources of uncertainty. Aside from the random nature of measurements and

observations, uncertainty can take the form of imprecision, vagueness, and incompleteness. The

sensory system may be defective; thus making data unreliable. The sensory system might be
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incomplete; thus making data partial and imprecise. Therefore, structural diagnosis requires a

means for reasoning with uncertainty.

Different approaches have been developed to quantify uncertainty. Probability is the standard

tool for dealing with uncertainty, more specifically randomness. Although it is well understood

and mathematically sound, the direct application of probabilistic analysis is not always practical

or possible due to limitations in defining and assigning probability values and densities. This

approach has the restrictive assumption of probability model and the preciseness of the

probability distributions. During the last few decades, significant effort towards generalizing

uncertainty quantification has been made, which includes concepts such as fuzzy sets, Dempster-

Shafer (D-S) belief functions, certainty factors, amongst others [67,172].

In time-constrained situations, such as aircraft forced landing, there may be few statistical data

available and decisions must be made utilizing subjective expert knowledge. Human decision

making is well known to deviate from classical probability theory and instead is made based on

causal and heuristic methods based on personal experience. In the next sections, we will examine

the probability method with alternate choices - fuzzy reasoning and imprecise probabilities - as

diagnostic reasoning support systems.

3.2 Probabilistic Approach

In the probabilistic approach, uncertainties are characterized by the probabilities associated with

the events. The probability can be represented by the frequency of occurrence, if sufficient data is

available, from which a probability distribution is generated for statistical analysis. Probabilistic

analysis is the most widely used method for characterizing uncertainty, which could be due to

stochastic disturbances, such as noise, variability conditions, and risk considerations.
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Uncertainty can be modeled using either discrete or continuous probability distributions. In

general, there are three approaches to calculate the probability of event A. Classical probability:

P(A) = k I n, where k is the number of elementary events involved in A, and ? is the total number

of elementary events. Frequency approach: P(A) = ml ? , here ? is the number of repeated times

of the experiment, and m is the total number of times A happens. Subjective determination

(Bayesian) approach: P(A)- the value given by priors or experts [172]. It is usually used for

random events that cannot be repeated in large quantity. Any probability measure, P() on a finite

set T can be uniquely determined by a probability distribution function

?: T -> [0,1] (3)

from the formula

P(A) = Y ?(?) (4)
QeA

If A represents a certain event, then P(A) = 1 . Given two mutually exclusive events, A and

B , then P(A u B) = P(A) + P(B) . Based on the latter probability definitions or rules, the Bayes'

rule of additivity is defined as P(A) = 1 - P(—A) .

In probability theory, Bayes theorem serves as the basis for the Bayesian inference technique to

aggregate uncertain information. The Bayesian approach combines existing information with

prior information to compute a posteriori probability of a particular outcome as follows

P(AlE1)^P(E1IA)P(A) (5)
Posterior <* Likelihood ? Prior

When multiple information sources are available, the probability of event A is given by

P(A I £,,...,£„) - P(Ex,...,En\ A)P(A) = P{A)f[P(Ei | A) (6)
1=1
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The latter equation is shown with the assumption of independent information sources E1 .

The main requirements of Bayesian approach is a prior distribution that can be updated to obtain

a posteriori distribution and independent evidence sources. In diagnostic analysis, we are

interested in making 'correct' decisions. Therefore, comparison of decision options in Bayesian

formulation can be formulated as a likelihood ratio test

? L(A\EA,...,En) = ?(?\??,...,??)
L(BlE1^En) ?(?\??,...,??)

where L() is the likelihood function. In the formulated likelihood ratio test, if ? > 1 , then

event A is preferable over B, if ? < 1 , then event A is not preferable over event B, thus selection

for event B is made. Given that more than two event outcomes are available, then a composite

hypothesis test is used where essentially all events are compared to select the choice with the

highest probability support.

An issue with Bayesian approach is that it require precise probabilistic distribution, and when

data are incomplete, exact Bayesian inference is typically computationally infeasible [172]. In

this case, approximations are required, which has a significant impact of the inference

performance. When data is not complete or available, expert knowledge may be used.

Furthermore, if no expert information is available, then prior probabilities can be set equal by

using

P(A) = P(B)=- or P(Ok) = — , where k = 1,...,JV (8)

The a priori probabilities can then be updated recursively as new information becomes

available.
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3.3 Bayesian Belief Networks

A Bayesian Network (BN) is a graphical framework to model a probabilistic problem of interests,

which is defined by a pair of a graph and probabilities, and are a promising solution for

assessment reasoning under uncertainty. BNs efficiently represent a joint probability distribution

over a set of random variables. BNs a graphically depicted as directed acyclic graphs (DAGs). A

DAG consists of a set of nodes representing uncertain variables and a set of directed links, edges,

or arcs, between variables. An arc indicates a probabilistic dependency from one node (a parent)

to the other (a child). The child node is associated with a conditional probability distribution

(CPD) dependent on the parent's state. A node without a parent node is called a root node. A

probability distribution associated with a root node is called a prior distribution.

Consider a BN consisting of ? variables, X , then the joint probability distribution (JPD) of the

variables is a product of the CPDs and is defined as

p(X) = flpi(Xi\X1,...,Xi.i) (9)
The JPD can be simplified as follows

P(X) = YIp(XM) do)

where p? is the set of parents of node X1 .
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Figure 3.1. An example of BN

Variable may be continuous or discrete. If the variables are continuous, the quantitative part of

the BN is composed of conditional probability density functions (PDFs). On the other hand, if the

variables are discrete, the quantitative part of the BN is composed of probability tables. BNs may

be used to obtain the probability of certain variable X¡ given the available evidence, i.e.

P(X1 = xi I Evidence) . This process is commonly known as inference or model updating. The

problem of computing the posterior probability on a BN is NP-difficult [136].

Bayesian networks have been recognized as one of the most promising methodologies for

prediction under uncertainty [136]. However, a problematic area in Bayesian approach is that of

handling complete ignorance or scarce information about the prior. Under complete ignorance of

the prior, the uniform distribution is assigned to the different choices available. In addition, BNs

are difficult to build with missing data, which can be overcome by providing input from

subjective human domain experts. In numerous real-world applications, information is scarce and

incomplete, and for these situations, BNs are not reliably implemented. Therefore, multiple

techniques have been developed to address problems like these, such as imprecise probabilities.
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3.4 Fuzzy Sets

Fuzzy sets theory allows uncertainty modeling when training or historical data are not available

for analysis. Fuzzy theory facilitates uncertainty analysis where the uncertainty arises from lack-

of-knowledge or "fuzziness" rather than randomness alone. Fuzzy sets theory was introduced by

Zadeh [192] as a means to model the uncertainty of natural language, which developed the notion

of partial-truths or fuzzy form of determining if an element is a member of a set or not. Classical

set theory allows for "crisp" membership, while on the other hand, fuzzy theory allows for

gradual degree membership. This approach has been used to analyze uncertainty associated with

incomplete and subjective information in engineering design and analysis. It is important to note

that in this work, the possibility theory is assumed to be part of the fuzzy theory. Zadeh used

fuzzy sets as a basis for possibility since a proposition that associates an uncertain parameter to a

fuzzy set induces a possibility distribution for this quantity, which provides information about the

values that this quantity can assume [193].

Given the universal set T , the possibility is defined on S and it is a set function with values in

[0,1] . A possibility measure, Pos , is characterized by the property

Pos [JA1 = sup Pos (A1) (11)is IKiel J

for any value of subsets of T defined by an arbitrary index set / ; it is semi-continuous from

below. A necessity measure, Nee , is characterized by the following property

Nee
W J
f]A¡ = MNec(Ai) (12)

for any family of subsets of T ; it is semi-continuous from above. Possibility theory satisfies

the following conditions
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Pos(0) = O, ??e(T) = 1 (13)

Poí(Vu W) = max(Pos(V),Pos(W)) (14)
where V and W are two non-intersecting sets involved in T .

The essential difference between possibility theory and probability theory is that the probability

sum of all non-intersecting events in probability theory is 1, while it may not be 1 in possibility

theory. Furthermore, possibility theory may be viewed as a special branch of imprecise

probabilities, in which focal elements are always nested [136,172]. This makes possibility theory

naturally suited for representing evidence in fuzzy sets, since or -cuts of fuzzy sets are also

nested. The imprecision in probabilities and utilities is modeled in fuzzy sets through membership

functions defined on the sets of possible probabilities and utilities [172]. The theory of fuzzy sets

aims to model ambiguity by assigning a degree of membership µ(?), between zero and 1, see

Figure 3.2. The parameter ? is represented as a triangular fuzzy number with support A0 . The

wider the support of the membership function, the higher the uncertainty. The fuzzy set that

contains all elements with a membership of ore [0,l] and above is called the a -cut of the

membership function. At a resolution level of a , it will have support of A01 . The higher the value

of a , the higher the confidence in the parameter. The membership function is cut horizontally at

a finite number of ör -levels between O and 1. For each ör -level of the parameter, the model is run

to determine the minimum and maximum possible values of the output. This information is then

directly used to construct the corresponding fuzziness (membership function) of the output which

is used as a measure of uncertainty.
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?

Membership
Value, µ(?) L LVj^ \.^ a-level cut

Ao

Figure 3.2. Example membership function, µ in fuzzy-sets theory.

Operations on fuzzy sets are defined in a similar manner as operations on ordinary sets, where

operators such as complement, union and intersection are applied to characteristic functions

[192]. The complement of the fuzzy set is defined as µ^?(?) = 1-µ?(?) . The union operation

takes the maximum (possibility) of the characteristic functions of two sets,

//AuS(x)=//A(x)u µ?(?) , whereas the intersection takes the minimum (necessity),

µ???(?)=µ?(?)G?µ?(?) . A fuzzy rule relates two or more fuzzy propositions, which are

statements that assert a value for a fuzzy variable. Fuzzy inference determines a belief in a rule's

conclusion given evidence on the rule's premise. After the rule's have been applied, the output is a

fuzzy set. Typically, such as in control systems, this fuzzy set has to be converted to a crisp value.

This process is called denazification, which produces a quantifiable result in fuzzy logic.

Fuzzy memberships are not probabilistic measures. Fuzzy logic has been successfully applied

industrially in areas such as character recognition, speech recognition, control systems, medical

diagnosis, amongst others. In practice, fuzzy systems usually undergo extensive tuning. Fuzzy

methods do play vital roles in process control applications and low-level processing on sensory

data. In terms of complex reasoning, fuzzy methods probably won't play a significant role. For

further details on fuzzy sets, see [192,193].
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3.5 Imprecise Probabilities

Imprecise probabilities, also known as interval probabilities, have gained particular interest in

multiple research areas. Imprecise probabilities generalizes probability theory by bounding an

uncertain event A via interval probabilities [P(A), P(A)], where P(A) is the lower probability,

also known as certainty or belief, and P(A) is the upper probability, also known as plausibility or

possibility [172]. In terms of generalizing probability, the notion behind interval probabilities is

that if the situation allows for precise or complete information regarding the uncertainty of A ,

then the determined upper and lower probabilities would be close to each other and approach a

single probability distribution. On the other hand, if the information collected is very imprecise or

incomplete, then the separation between lower and upper probabilities would be significant and

thus would need to be considered. Imprecise probability approach avoids having to make precise

statements, and allows for representation of knowledge according to the data quality without

introducing any extra unsubstantiated information. The resulting indeterminacy in the belief about

the unknown state can be viewed as a shortcoming for any subsequent decision analysis, but it is

also a strength since it reflects the reality of the situation faced by a decision maker. In addition,

say information for determining P(A) is obtained from two conflicting expert sources, in the

sense that one expert's probability is less than or greater than the second expert's probability

estimate, then it would be useful to know that their information or knowledge comes from

different types of evidence.

The concept of imprecise probabilities has been proposed by many statisticians [136] as a way

of representing weak information. Representative imprecise probability approaches are Bayesian

Robustness, interval probability, Walley's imprecise probability, and Dempster-Shafer evidence

theory. Comparison of different probability approaches can be found in [136, 172, 181].
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3.5.1 Dempster-Shafer Evidence Theory

The Dempster-Shafer (D-S) evidence theory is derived from Dempster's original work [181]
which was aimed at relaxing certain Bayesian restrictions when dealing with the inference of

unknown parameters. Shafer [149] expanded Dempster's original works and produced what is

now known as the D-S theory.

Dempster-Shafer' s evidence theory is an imprecise probability method, relies on the concept

that information of a given problem can be inherently imprecise. Hence, the bound result which

consists of both belief values, the lower bound of probability; and, plausibility, upper bound of

probability, is presented. Unlike possibility or fuzzy set and probability theory, in evidence theory
there is no need to make an assumption or approximation for the imprecise information.

Epistemic plausibility can be represented in evidence theory via belief functions, where the

degrees of belief may or may not have mathematical properties of probabilities. In comparison to

probability theory, instead of using probability distributions to capture system uncertainties, a
belief function is used to represent a degree of belief. Probability values are assigned to sets of

possibilities rather than single event. The basic entity in the D-S theory is a set of exclusive and

exhaustive hypotheses about some problem domain. It is called the frame of discernment ( FoD ),
denoted as T . Given a universal set or frame of discernment T , then a basic belief assignment

(BBA) is a function m : ? -> [0,1] , where ? is the set of all subsets ofT ; and the power set of

T is ? = 2T . The function m can be interpreted as distributing belief to each of element in ? ,

with the following criteria satisfied:

^m(A) = I, m(0) = O (15)

In evidence theory, we do not assign any degree of belief to the empty proposition 0 and we

ignore the possibility for an uncertain parameter to be allocated outside of the frame of



www.manaraa.com

68

discernment. Thus, the element A is assigned a basic belief assignment (BBA) m(A)

describing the degree of belief that is committed exclusively to A. Note that a situation of total

ignorance is characterized by m(0) = 1 . The total evidence that is attributed to A is the sum of all

probability numbers assigned to A and its subsets

BeI(A)= J] m(B) (16)

Given that we have q number of information sources affecting decision-making, then each

information source S¡ will contribute by assigning its beliefs over©. The information sources

can distribute masses on every subset of the FoD

A1 e 2T :{0, A1 ={HA},...,\ ={#,}, Aq+Ì ={Hì,H2},...,A2,_ì ={H„...,Hi]}} (17)
A source of information assigns a BBA between 0 and 1 on hypothesis A1 on which it has direct

knowledge. The assignment function of each source is denoted by mi .

The lower bound of the evidence interval is the belief function, which amounts for all the

evidence B that supports the selection of A1

BeI(A1)= Y^m(B) (18)

The upper bound of the evidence interval is the plausibility function, which accounts for all the

observations that do not rule out the selection A1

PZ(A1) -1- Bel (A) = 1- X m(B) (19)
0*BnA¡
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Min belief level of ? Max beiief level of A

BeHA) The level ol'ignorance in ? Beli. A )
PI(A)

Figure 3.3. Plausibility and belief measures and their complement.

Thus, according to the observations of information source, the uncertainty concerning

hypothesis A1 the interval, see Figure 3.3,

[BeI(A1)Sl(A,)]
The above interval reduces to a single point in the case of Bayesian analysis.

(20)

From plausibility and belief measures, we obtain the basic belief assignment by the möbius

transform [153]

m(A¡)= X (-l)|AHfi|ß<?/(ß) (21)
BcA

where \A¡\ is the cardinal set of A¡ .

If the imprecision on a probability measure is described by an interval, the relation with a BBA

is directly obtained by

[Pn^ = [BeI(Ht\Pl(Ht)] (22)

where P11 and PH are the lower and upper probability bounds of hypothesis H1 , respectively,

with ¿ = 1,2,..., g being the number of hypothesis. The transformation of a probability interval

vector or interval set Px of a random variable X to a BBA Mx is obtained as follows
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(23)

then

Mx =[m(0),m(A),...,w(A29i)]
(24)

with Aie2e . As argued by Smets [153], the knowledge of [BeI(A1), Pl(Ai)] is equal to the

knowledge of the BBA on the FoD .

3.5.2 Belief Function Combination

Given two independent belief functions over the same frame of discernment, Dempster's rule

gives a way for combining BBA structures

m(C) = m1(A)®m2(B) = -
£ In1(A))Ii2(B)

\nB=C

1- X Tn1(A)TH2(B)
(25)

AnB=0

The denominator of Eq. (25) is a conflict of information given by independent information

sources. Dempster's rule disregards every contradiction by normalizing with the complementary

degree of contradiction because it is designed to use consistent opinions from multiple sources as

much as possible. For ? mass functions µ?,µ2,...,µ??, the combined mass function and measure

of contradiction are given by

M(A) = (M1 ® m2®...® Mn)(A) ^ ~^— S M1(Bx)- M2(B2)- -Mn(Bn) (26)l~K ft, B1=A

K= S mì(B1)-M2(B2)--Mn(Bn)>0
Cl?* B1 =0

(27)
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D-S theory has become an important tool for dealing with uncertainty. Recent advancements

in the D-S theory are best covered in [181]. Dempster's rule of combination has some important

features, such as being commutative and associative. When a BBA is combined with an ignorance

BBA, the resultant BBA is always identical to the original BBA, which suggests the idea that the

complete ignorance does represent zero informational input. Dempster's rule of combination,

which is central to combining evidence and updating probabilities, has limitations when dealing

with highly conflictive data sources, which render the rule unreliable [136]. While Dempster's

rule of combination has a credible basis for data fusion and it has been widely applied to multiple

works [172,181], numerous discrepancies exist due theoretical weaknesses, which are beyond the

current work being presented. For more discussion on Dempster's rule of combination, see

[136,149,181].

In addition, greater generality is needed because the class of belief functions in D-S theory is

not large enough to model all reasonable types of uncertainty. While the D-S approach can

exhibit desirable properties in terms of imprecision and ignorance analysis, the utility or

practicality of this approach depends on how well they account for the origin of imprecision or

ignorance, and how well they can integrate new evidence or information. Given the interval belief

between belief and plausibility measures, how can hard (clear and definite) decisions be made?

3.6 Evidential Networks

In the modeling of structural systems for the analysis of their structural safety and reliability, the

variables which represent the system, its components, its function or the events are related to each

other. These relations are represented by conditional dependencies. In this section, we propose the

application of Evidential Networks (ENs) to represent the conditional dependencies among the

system variables in a description space integrating uncertainty as belief masses of the Dempster-
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Shafer theory. The proposed ENs are directed acyclic graphs which represent uncertain

knowledge as aleatory and epistemic ways. ENs with conditional dependencies were originally

proposed by Smets [153] for propagation of beliefs. Variations and advances of these networks

have been studied by [73, 152,188].

»UTx

mgix

MX)

mB\x

, "IxTt

mxiA

Updating the belief at node X Propagating the belief at node X for further updating

Figure 3.4. Evidential network with updating and propagation of node X.

Graphically, ENs has similar aspects to Bayesian networks (BNs); however, in the networks

using belief functions, the relations among the variables are represented by conditional belief

functions. Each variable X in the EN has a set of possible values, called frame of discernment,

FoD , that consists of q mutually exclusive and exhaustive values of the variable. For each root

node X (variable without parents), uncertainty is represented by a priori belief function BeI0(X).

For the other nodes (variables with parents), uncertainty is represented by a conditional belief

function BeI(X | Parents) given the value taken by its parents. Similar definitions apply to BBA

and plausibility functions. When evidence from distinct sources is observed for certain nodes, it is

combined by the Dempster-Shafer theory. Thus, beliefs for the corresponding nodes are updated

and propagated to the neighboring nodes through the network.



www.manaraa.com

73

The vector Mx is the belief mass distribution over the 2q focal sets Af and is defined by

Mx : ~m(X e 0),m(X e Af ),...,m(X e Af ),...,m(X ?? ??,_? )] (28)

with m[X ç Af ) > 0 and ^] nz(X ç Af ) = 1 , where m(XçAf) is the belief that variable
A*e2e

X verify the hypothesis of focal element Af .

To compute the marginal belief mass of each node, we use inference algorithms. The exact

inference is carried out by the algorithm proposed by Jensen [77] based on the construction of

junction tree. This algorithm updates the marginal belief mass distributions on each node

according to the evidence representing the knowledge introduced into the evidential network. Due

to node connectivity, in ENs, the updated belief can be propagated throughout the network. Belief

updating and propagation starts from each observed node and propagates belief to its neighboring

nodes. For singly-connected networks, the fundamental algorithm for exact probabilistic

inference was proposed by Pearl [136]. The main principle underlying Pearl's polytree algorithm

is the use of probabilistic independence properties implicit in the structure of these networks. By

exploiting these independence properties, the probability computation can be factored into a

number of local computations which communicate by message-passing between neighboring

variables. In this research, we make use of an efficient propagation algorithm for evidential

networks with conditional belief functions, which extends Bayesian networks to the

representation of uncertain information according to the framework of Dempster-Shafer theory.

3.7 Case Study: Illustrative Example in Car Diagnostics

We illustrate the use of D-S and Bayesian theory with a representative example based on sensor

fault diagnosis as a basis for comparison. Suppose your car has problems starting and you have
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narrowed down the possible reasons to 4 possible component malfunctions. To verify that car

starts without problems, each component is required to work adequately. For this situation, we

assume that a single component is faulty, which negates the possibility for two or more

components being bad simultaneously. This simplification greatly simplifies the analysis. The

diagnostic problem consists of finding which sensor is broken. The causal and belief networks for

this example are shown in Figure 3.5.

Wont
Start

Battery siarter Alternator Distributor

Expert.2Expert!

Battery
Distributor

Distributor
Alternator

(a) (b)
Figure 3.5. Car diagnostics network, (a) Causal network; (b) Expert aggregation network for experts 1 and 2.

Suppose there are four possible sensor network fault conditions, which are given by

S = If1, f2, f3, f4} = {battery, starter, distributor, alternator} , where / indicates that component-

i is faulty. Assume we have three sequential informational reports from three "experts" sources.

Since you are a novice at car repair, you decide to get help as follows: initially you ask your

neighbor, second you look for information on the internet, and finally you decide to call a

mechanic. Table 3.1 shows the expert knowledge sources for their reports on the car diagnosis

and the interpretation by each of the uncertainty analysis methods. The "certain" statements are

interpreted in the D-S approach as belief values for the particular set. The first two experts

coincide with partial knowledge in that fault might be associated with /3 , but different partial

evidence for /, and /4 . The third expert is used here to add conflict and inconsistency. In

contrast to the first two experts, the third expert evidence has the inconsistency in that he extends
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the possible fault selection to an unknown one, {Other = fuse} , which questions the accuracy

of the probability space S .

Table 3.1. Expert knowledge base for car diagnosis.

Expert 1 Expert 2 Expert 3

Report
60% certain choice is "battery" or

"distributor"

60% certain fault is "distributor"

or "alternator"

75% certain one of the four

components is faulty, and: "starter"
is 2X likely as "battery",

"distributor" is 3X as likely as
"battery", and "alternator" is 2X

likely as "battery"
Set

Attribution
{/../3) {/3. ? see below

Probability
Interpretation

/»({/„/3} I ßpertl) = 0.6
P(J2, f,)\ Expert!) = OA
0 < P1 < 0.6, 0 < p2 < 0.4
p3=0.6-p„p4=0.4-p2

P(J,, f4)\Expert2) = 0.6
P(Jvf2)\Expert2) = 0A

P(If1] I Expert!) = 0.05
P({f2}\ Expert?,) = 0.1
P({f,]\Expert3) = 0A
/>({/,} I ßgw*3) = 0.2
P({Other] | Expert!) = 0.25

Dempster-
Shafer

Interpretation

"I1Uf1J3)) = 0.6
M1(S) = OA
[Bel, Pl\fhfìì =[0.6,1.0]
[Bel, Pl]s =[1.0,1.0]

In2(J1J,]) = 0.6
m2(S) = 0A
[Bel,Pl](fiJ4] =[0.6,1.0]
[Bel, Pl]5 =[1.0,1.0]

"HUf1)) = 0.1
m,({/2}) = 0.1
m3({/3}) = 0.4
M1(J4]) = 0.2
m(5) = 0.2

The expert reports are sequential and we will aggregate the information from experts 1 and 2

first. Table 3.2 and Figure 3.6 show the aggregation of experts 1 and 2 for both Bayesian and D-S

approaches. At this point, using the information provided by first two experts, the probability

method offers a partial decision for a particular decision, in this case choosing fault /3 . On the

other hand, D-S approach does not provide any direct or clear decision information on fault

isolation. For example, Table 3.3 shows a Bel({f3}) = 0.649 , but this is not enough to make a

decision since BeIHf1, f3}) = 0.6, Se/({/3,/4}) = 0.7 which means that there is the possibility

that f and /4 could potentially have high beliefs, but the current information is not sufficient.
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Advocates of D-S theory would indicate that this no-decision result indicates that additional

information is needed. Critics of D-S theory would indicate the decision-making weakness of the

approach [136].

Aggregating the information from the third expert offers some difficulty in the probability

approach. The probability space must be modified to accommodate for the selection {Other} ,

which necessitates that the early aggregation results of experts 1 and 2 be updated to include this

option. Recalculation of results will be omitted here. On the other hand, the information

inconsistency of expert 3 can be handled using D-S theory.

Table 3.3 and Figure 3.6(b) show the results obtained using from aggregating information

given by expert 3. Since expert 3 offers beliefs on individual paths, the aggregation results do

show a partial decision for /3 as the probability method showed previously, but now with

inconsistent evidence. Due to the additional evidence from expert 3, the probability intervals from

D-S approach are smaller.

Table 3.2. Aggregation of expert 1 and expert 2.

Probability: Expertl + Expert2 D-S: Expertl + Expert 2

Available

Information

W11Z2I) = HW11Z5D = Oi
P(U1JJ) = I-X, PUf2J3]) = ?
W2,/4}) = 0.4,P({/3,/4})=0.6
PUf)] + PUf2U = OA
PlIf1)] + P[{j3}] = 0.6
PUf2)) + PUf\)] = ?

Dempster's rule:

^({/3}) = ^Uf1J,)) ® w2({/3,/4}) =0.36
^.2({/1./3})=^({/l./3>)®'»2({S}) = 0.24
^2(If„ fJ) =rrh({S})®m2({f3,f4}) = 0.24
M12US)) = M1US)) ® M2US)) =0.16

Aggregation
Results

P[IZ1]] = 0.55 -x/ 2
PUf1]] = ? 1 2-0?5
?[{/3}] = 0.15 + ?-/2
P[{Z4}] = 0.45-x/2;(p4=0.3-p2)

where 0.2<x<1.0

[Bel,Pl\n] =[0.36,1.0]
[Bel,Pl\fhJi] =[0.6,1.0]
[Bel, P/]{/3,/4) =[0.6,1.0]
[Bel, PZ]5=[LaLO]
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«lu«/,}) = 0.36 ^Mf1JJ) = 0.24 TH1^UfJ) = 0.24 m12({S}) = 0A6

to,(Í/,}) = 0-05 00.018 Tn(If1]) = 0.012 00.012 ^((ZJ) = O-OOS

m,({/2}) = 0.1 00.036 00.024 00.024 m({/2}) = 0.016

Ot1(IZ3)) = 0.4 m({/3}) = 0.144 m({/3}) = 0.096 «({/,}) = 0.096 m({/3}) = 0.064

W3(IZ4)) = 0.2 00.072 00.048 m({/4}) = 0.048 m({/4}) = 0.032

m3({S}) = 0.25 m((Z3}) = 0.09 ?»({/„/3» = 0.06 w({/3,/4})=0.06 m([S}) = 0.04

Ä; = 0.018 + 2x0.01 2 + 0.036 + 2x0.024 + 0.072 + 0.048 = 0.246, 1 - k = 0.754
BeI(Xf1 }) = (0.012 + 0.008) / 0.754 = 0.026
BeIUf2]) = 0.016 / 0.754 = 0.021
BeI(XfJ) = (0.144 + 2x0.096 + 0.064 + 0.09) /0.754 = 0.649
Bel({fJ) = (0.096 + 0.032) /0.754 = 0.169

Pl({fJ) = \-Bel({-jJ) = 0.\59
/>/({/2}) = l-fie/({-/2}) = 0.153
Pl(IfJ) = I- BeI(WJ) = 0.782
Pl(IfJ) = I- BeI(WJ) = 0.302

1

0.8 H
•fI 0.6

15
JS? 0.4 H
Fh

0.2 I ¦ I ?
ß P ß fit

(a) Fault Selection

S 0.4 H

fl ß ß
(b) Fault Selection

f*

Figure 3.6. (a) Probability aggregation interval results for experts 1-2. (b) Dempster-Shafer aggregation interval
results for experts 1-3.

3.8 Discussion

The diagram shown in Figure 3.7 illustrates the relationship among the main classes of

uncertainty theories. The structural analysis uncertainty sources and uncertainty quantification

strategies is depicted in Figure 3.8 based on the characteristics of the source information. Given a

random nature, structure damage uncertainties are aleatory uncertainties, and when insufficient
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data and/or lack of knowledge exist to construct probability distribution, uncertainties are

treated as epistemic uncertainties. Due to the broad concept of uncertainty, this research area and

its engineering applications are still in its infancy.

Imprecise Probabilities

PlausibilityBelief

Necessity Probability Possibility

Figure 3.7. Relationship among main classes of uncertainty measures.

Model Uncertainty
¦ Form
¦ Parameter

Environment Uncertainty
¦ Loading conditions
¦ Weather

Scenario abstraction
¦ Subjective decisions
¦ Lack of knowledge

System Uncertainties
¦ Complexity
¦ Nonlinearities
• Boundary conditions
¦ Non-stationary

Probability
Density

Function Epistemic UncertaintyAleatory Uncertainty

Signal Processing Uncertainty
• Sensor
¦ Feature extraction/selection
¦ Data fusion
¦ Decision-making

Probability Theory Evidence Theory
(Imprecise Probability) Possibility Theory

Figure 3.8. Uncertainty sources and analysis approaches.
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A central assumption of the Bayesian theory is that uncertainty should always be measured

by a single probability measure, and values should always be measured by a precise utility

function, which is called the Bayesian dogma of precision [172]. Alternative formalisms in

uncertainty analysis have been motivated by the fact that the dogma of precision is mistaken in

addressing non-random uncertainties. Imprecision, indeterminacy, vagueness and indecision are

incompatible with individual probabilistic expressions. The Bayesian approach assesses precise

prior probabilities of parameters and combines these to output precise posterior probabilities,

even when there is very little prior information, which may render unreliable and irrational

results. Alternative formalisms, such as D-S theory, give explicit notation to confidence

measures, also known as imprecise probabilities, where lower and upper probabilities are

generated. In general, lower probability is taken as the minimum certainty at which you are

willing to make a specific decision, and upper probability is the maximum certainty at which you

are willing to make a specific decision. From the standpoint of D-S theory

?(T) = µ({T}) (29)
for all Öe0. Probability measures are the point where belief and plausibility measures coincide.

Admission of imprecision in probabilities is needed to reflect the amount of information on

which they are based. In terms of time-constraint situations, assessment of precise probabilities

might be impractical due to lack of time or computational ability, or because of the level of

system complexity. In other words, for partial data, partial answers should be given. The D-S

theory handles both the uncertainty and imprecision contained in data due to the belief and

plausibility functions which can be seen as an interval enclosing imprecise probability. The D-S

theory does not pretend to provide full answers to probabilistic data, but rather provides partial

answers by estimating how much does the evidence supports the truth of a hypothesis, instead of
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estimating how close the hypothesis is to being true. But, greater generality is needed because

the class of belief functions in D-S theory is not large enough to model all reasonable types of

uncertainty. Furthermore, Dempster's rule of combination, which is central to combining

evidence and updating probabilities, has limitations when dealing with highly conflictive data

sources, which render the rule unreliable [136]. While imprecise probability approaches can

construct mathematical theories that exhibit desirable properties in terms of imprecision and

ignorance analysis, the utility or practicality of such approaches depends on how well they

account for the origin of imprecision or ignorance, and how well they can integrate new evidence

or information. Given that interval probabilities are generated as outputs, how do these intervals

convey information for inference and decision-making processes?

In terms of damage assessment, the fuzzy-sets theory can also have problems when dealing

with pattern recognition. For example, assume we have a normal and a faulty operating condition.

If a given pattern is far away from the normal operating class, it will have a small membership

value according to this class, and consequently, it will have a bigger membership to faulty class.

But if in addition, this pattern is far from both classes, it will be wrongly assigned to second class

instead of being rejected, which could be a rejection class. In other words, fuzzy sets can only

deal with vagueness and not necessarily imprecision. Ambiguity is only one potential source of

imprecision in probabilities and, unlike other sources of imprecision, it can be eliminated through

careful elicitation [172]. Critics of fuzzy sets argue that the membership functions that are chosen

to model ambiguous probability judgments seem both arbitrary and inappropriately precise and

that no clear interpretation of the membership function has been established [136, 172]. The

assessment of fuzzy sets requires substantial input from a user, which might render its usage

closer to that of expert systems.
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Table 3.4. Axioms of Probability, Fuzzy-Set (Possibility), and Evidence theories.

Probability Theory Fuzzy-Sets (Possibility) Theory D-S Evidence Theory

/>(©) = ! Pos(0) = O, /5Oi(Q) = I m(0) = O, m(0) = l

P(A)>OVAeS VA,BeS
if A ç B, then Pos(A) S Pos(B)

V A,Bem(Q)
if? c B, then mi A) < m(B)

\/A¡, i e I, A¡ disjoint

? J ¡e I

VA1, ¡e /, A¡ disjoint

? [JA1 Umax (Pos(A¡))
V A¡, ie I, g(-) of subsets of T
if sequence is monotonie, then
IhTIg(A) = SUm(A)

BeI(A) + Bel (A) <1
Pl(A) + PI(a)>\

Table 3.4 compares the uncertainty theories in terms of their axioms. Probability theory can

handle uncertainty contained in data, but it cannot treat the imprecision. Fuzzy-sets theory can

handle the vagueness type imprecision by replacing the additive axiom in probability theory with

the weaker monotonicity axiom. In the case of insufficient information and no-conflicting

evidence, the possibility theory is a suitable method to quantify uncertainty. If conflicting

information exists, the evidence theory should be used instead. Evidence theory is the general

theory to represent uncertainty and includes the possibility and probability theories.

3.9 Summary

The multiple uncertainty management paradigms produce different numerical responses and with

different limitations, which makes the choice clearly not arbitrary. Thus, the choice of uncertainty

analysis approach depends on the nature of the problem and the expertise of the user. There have

been relatively few reports of experiments to directly compare methods to combine probabilistic

information under imprecision with D-S, fuzzy-sets and Bayesian theory. Several comparison

papers based on simulation data or assumed situations have concluded that differences in

performance for the latter evidence combination approaches, but no definite advantage exists
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among the algorithms aside from the well known, such as that Bayesian is better fitted for

precise prior probabilities and that it's sensitive to parameter errors and imprecision. Bayesian

theory is best suited for applications where there is no ignorance and conditioning is easily

obtainable through probabilistic representation and prior odds are available. D-S theory, and other

similar imprecise probability approaches, are more appropriate where uncertainty cannot be

assigned precise probability to a proposition, and conditioning effects are difficult or impossible

to measure separately, and prior odds are not pertinent.
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Chapter 4

Novel Dimensional Reduction Approach for Damage Detection with

Increased Robustness

Problems of structural design and analysis always involve an element of aleatory uncertainty due

to randomness. No matter how much is known about the phenomenon, the behavior of the

structure is incapable of precise prediction. To address the problem of randomness in damage

detection, we propose the implementation of diversified ensemble diagnostic algorithms. In this

section, instead of choosing the best diagnostic method on a case-by-case basis, we combine the

outputs of multiple dimensional reduction techniques for robust damage detection classification.

In this section, we present a damage detection and monitoring method based on a distance

similarity matrix of dimensionally reduced data wherein redundancy therein is removed. The

matrix similarity approach is generic in nature and has the capability of multiscale representation

of dataseis. To extract damage-sensitive features, dimensional reduction techniques are applied

and compared. An ensemble method of dimensional reduction feature outputs is presented and

applied to two case studies. The results supports why ensembles can often perform better than any

single-feature extraction method. For the first case study, aeroacoustic datasets are collected from

controlled scaled experimental tests of controlled known damaged subscale wing structure. For

the second case study, a vibration experiment study is used for abrupt change detection and

tracking. The results of the two case studies demonstrate that the proposed method is very

effective in detecting abrupt changes and the ensemble method developed here can be used for

deterioration tracking.
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4.1 Introduction

Important to the field of structural health monitoring (SHM) is finding a clear structural damage

indicator. Sequential hierarchical levels of damage diagnosis, such as localization, quantification,

and prognosis, rely on how well of a damage indicator is being used. Real-world data usually has

high dimensionality, which under low-variability from undamaged to damage states can make it

difficult to separate outliers in the one-class classification problem of damage detection. To aid in

the classification process, dimensionality reduction, a data-driven technique class, reduces the

representation to a transformed subset of features necessary for the intrinsic data properties.

Dimensionality reduction can be used to facilitate classification, visualization, and compression

of high-dimensional data. Dimensionality reduction deals with the transformation of a high-

dimensional data set into a low dimensional space, while retaining most of the useful structure in

the original data. Dimensionality reduction has become increasingly important in system

diagnostics due to diverse and increasing number of data sets with a large of number of features,

such as the frequency response of complex and continuous structural system. The underlying

assumption for dimensionality reduction is that the data points do not lie randomly in the high-

dimensional space; rather, there is a certain structure in the relationship among the points that can

be exploited, and the useful information in the high dimensional data can be summarized by a

small number of attributes.

In damage detection, the modeling required should be as minimal as possible in order to deploy

a real-time monitoring system. Therefore, dimensionality reduction techniques are suitable for the

initial step of damage detection. Dimensionality reduction techniques do not assume any form of

model information and rely only on the training data available. The detection and tracking of

structural damage can only be observed via extracted features from the available system response

measurements. Feasibility and accuracy in performing feature extraction and selection is a very
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critical step in the diagnostic decision process since it determines how relative information is

presented to a human or computational classifier.

Finding features that allow us to identify and track structural damage can be a challenging task.

For this reason there exist several approaches that have been shown to perform well on various

types of engineering systems. Markou [107,108] summarizes the necessary principles for novelty

detection approaches in terms of robustness, uniform data scaling, minimization of parameters

used, capability of generalization, feature independent, adaptive (re-trainable), and minimal

computational complexity. Common feature extraction methods that have been used in damage

assessment studies include neural network-based techniques [108], fuzzy methods [40,133],

multivariate statistical techniques, such as principal component analysis (PCA)

[59,80,94,95,156,182,183], and nonlinear dimensional reduction techniques [98,101,158].

Dimensionality reduction is a key step in feature extraction and selection since it simplifies the

classification level. For example, 2D or 3D projection of the multivariate data vector might be

required if visual classification of output data will be performed. In addition, it alleviates the

'curse of dimensionality,' which means that the number of training samples per feature increase

exponentially with increasing number of features in order to maintain a good level of accuracy.

Lei et al. [88] presented a weighted clustering algorithm using a compensation distance

evaluation technique (CDET) where extracted features are weighted and selected according to

damage sensitivity. Using this approach, Lei was able to demonstrate damage assessment at

different levels of severity and emphasized the importance of feature extraction prior to

classification. Data-driven techniques are limited to simplistic information levels in terms of

damage characteristics, e.g. detection and location. When increasing diagnosis levels of damage

information, such as type and detailed location, model-based and machine learning algorithms
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can be applied in a supervised learning context where data from both damage and undamaged

states can be gathered for proper damage assessment.

4.2 Dimensionality Reduction Methods

Due to the complexity and high dimensionality of dynamic response data, the simple binary

classification (detection case) of structural health into damaged or undamaged categories is not

always clear. To perform binary classification, a pattern needs to be identified among signal

features. In real-world data, these patterns are scattered in high-dimensional and very often in

nonlinear subspaces. Dimensional reduction simplifies the pattern representation and reduces the

computational effort required from classifiers. However, reducing the number of features could

lead to loss of valuable information. The goal of this study is to obtain two- and three-

dimensional projection of multivariate acoustic and vibration data to permit visual and

computational classification of data. The dimensional reduction techniques evaluated and applied

to vibration and acoustics experiments in this work are: (1) principal component analysis (PCA),

(2) kernel PCA (KPCA), (3) local linear embedding (LLE), (4) local tangent space analysis

(LTSA), (5) diffusion maps (DM), and (6) multidimensional scaling (MDS). The dimensional

reduction methods presented here are based on a review paper presented by Matten [104].

Dimensional reduction methods reduce the original data dimensionality D to a subspace

dimensionality d (d <D). The most well known linear feature extractor is principal component

analysis (PCA). This method computes the d largest eigenvectors of the DxD covariance

matrix of the ? ? D data matrix. Given the pattern matrix X

Xe9înxD (30)

consisting of ? data vectors and D features, PCA transforms this dataset to the derived pattern

matrix Y as
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Ye9înxd (31)

This linear transformation is defined as

Y = XH (32)

where

He9lDxd (33)

is the linear transformation matrix whose columns are the eigenvectors. The main drawback to

PCA is the computation of the covariance matrix, which becomes quite demanding with

increasing number of features. PCA is a linear technique since it embeds the data into a linear

subspace.

Numerous nonlinear dimensional reduction techniques are available. Kernel PCA (KPCA)

follows directly from PCA. The difference is that before PCA is performed the dataset is mapped

into a new feature space via a nonlinear function called kernel. Therefore, PCA is applied to the

kernel matrix K on the datapoints ?, , with the following dot product decomposition property

k^kfaxj) (34)
where k is typically a nonlinear function, in other words kernel, by which the input data is

mapped into a new feature space. This kernel based method relies on the choice of the kernel

function k . Common kernels include pm-order polynomial, Gaussian, and linear kernel, which is

equivalent to regular PCA.

Multidimensional scaling (MDS) is another nonlinear feature extraction technique which

creates low-dimensional projection while retaining pairwise distances between datapoints as

much as possible. The degree of correspondence between the distances among points implied by
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MDS map and the matrix input by the user is measured by the so called "stress function". The

general form of this function is as follows

stress Z,-.,-=i(/W~d») „.,• =\ ; (35)function \ scale

where di} refers to the Euclidean distance, across all dimensions, between points i and j on

the map, /(??) is some function of the input data, and scale refers to a constant scaling factor,
used to keep stress values between 0 and 1. When the MDS map perfectly reproduces the input

data, /(xj^-dy is for all i and j , so stress is zero. Thus, the smaller the "stress function" value
is, the better the representation becomes. Several stress functions are used to express the quality

of the mapping, the most well known are the Sammon and Niemann stress functions [104]. In this

work, the Sammon stress function is used for the MDS algorithm.

Diffusion maps (DM) are based on defining a Markov random walk on the graph of the data

[104]. By performing the random walk for a number of time steps, a measure of the proximity of

the data points is obtained. The end result is the diffusion distance. Given the graph of the data,

the spectral properties of the graph matrix are used to embed the data points into a lower

dimensional space. The DM approach has been shown to perform rather well with 'clean' data,

however it is sensitive to the presence of signal noise. In the diffusion maps framework, a graph

of the data is constructed first. The weights of the edges in the graph are computed using

Gaussian kernel function, leading to a matrix W with entries

+¦-?;G
wv- e 2s* (36)

where s indicates the variance of the Gaussian. Normalization of the matrix W is performed

in such a way that its rows add up to 1, which forms a matrix P(1) with entries
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p?=^— (37)

Because diffusion maps originate from dynamical systems theory, the resulting matrix P0) is
considered a Markov matrix that defines the forward transition probability matrix of a dynamical

process. Hence, the matrix Pa) represents the probability of a transition from one datapoint to

another datapoint in a single timestep. The forward probability matrix for t timesteps P(,) is thus

given by (Pa)) · Using the random walk forward probabilities p~, the diffusion distance is
defined by

where ?(?1)(0) = "I1VJ] ./«,· is a term that attributes more weight to parts of the graph with

high density and mi is the degree of node x; defined by mi· = J] . pv . The diffusion distance is

small if there aie many high probability paths of length t between two points. As the diffusion

process runs forward, revealing the geometric structure of the data, the main contributors to the

diffusion distance are paths along that structure. In the low-dimensional space representation Y ,

diffusion maps attempt to retain diffusion distances. Using spectral theory on the random walk,

the low-dimensional representation Y retains the diffusion distances ?(,)(?;,?;) as good as
possible by the d non-trivial principal eigenvectors of the eigenproblem

P(0V = /lv (39)

Because the graph is fully connected, the largest eigenvalue is trivial, A = I, and its

eigenvector, v, , is thus discarded. The low-dimensional representation Y is given the next d

principal eigenvectors, which are normalized by their corresponding eigenvalues.
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Local linear embedding (LLE) is a technique that preserves local properties of the data by

writing the high-dimensional datapoint X1. as a linear combination w, of their k nearest

neighbors x(> . LLE fits a hyperplane through the datapoint X1 and its nearest neighbors. The

local linearity assumption of LLE implies the construction weights w; are invariant to translation,

rotation, and rescaling; thus, any linear mapping of the hyperplane to a lower dimensionality

preserves the local geometry of the manifold. In other words, the reconstruction weights W1 that

reconstruct datapoint x;from its neighbors in the high-dimensional space also reconstruct

datapoint y¡ from its neighbors in the low dimensional space. Finding the d -dimensional data

representation Y amounts to minimizing the cost function

*(?)=S y,· -S^y?
J=I

subject to Iy^ f =1 for Vfc, (40)

where y(k> represents the k -th column of the solution matrix Y . The coordinates of the low-

dimensional representations y(. that minimize this cost function are found by computing the

eigenvectors corresponding to the smallest d nonzero eigenvalues of the product

(I- W)r(I-W) , where I is the identity matrix and W is a sparse nxn matrix whose entries

are set to 0 if i and j are not connected in the neighborhood graph, and equal to the

corresponding reconstruction weight otherwise.

LLE has become very popular in numerous applications, such as sound source localization and

image classification. However, LLE can become unstable (fail) with even simple datasets [104].

In addition, LLE tends to collapse large portions of the data very close together in the low-

dimensional space, which is useful for classification, but not if cluster distribution analysis is

desired.
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Similar to LLE, Local Tangent Space Analysis (LTSA) is a technique that describes

properties of the high-dimensional space using local tangent space of each point. LTSA is based

on the observation that there exists a linear mapping L1 from high-dimensional datapoint x, to

its local tangent space exists and that there exists a linear mapping from the corresponding low-

dimensional datapoint y; to the same local tangent space, hence the similarity to LLE. LTSA

computes bases for the local tangent spaces at the datapoints X1 by applying PCA on the k

datapoints that are neighbors of the datapoint X1. , which results in a mapping M1 from the

neighborhood of X1 to the local tangent space of T; . LTSA performs the following minimization

mm£||X-J*-LA|2 (41)
i' i ¿

where J¿ is the "centering" matrix, which performs the modification of subtracting mean of

the features in the feature space defined by the kernel function ? . The solution Y is formed by

the eigenvectors of an alignment matrix B , that correspond to the smallest nonzero eigenvalues

of B . The entries of the matrix B are obtained via iterative summation

B^;=BWm^ +J4(I-V1-Vf)J4 (42)
where Ni represents the set of indices of the nearest neighbors of datapoint X1 . Subsequently,

the low-dimensional representation Y is obtained by computation of the eigenvectors

corresponding to the d smallest nonzero eigenvectors of the symmetric matrix (B + Br ) / 2 .

In this section, we have presented the dimensional reduction techniques which can be utilized

for feature extraction via data compression. The effectiveness of dimensionality reduction

techniques in extracting features will be utilized for performing damage detection. In the next
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section, we present a novel robust approach for utilizing dimensionality reduction in damage

detection applications.

4.3 Proposed Dimensional Reduction Ensemble Approach for Damage Detection

Structural systems are exposed to varying operating and environmental conditions during their

lifetime, which causes gradual deterioration of structural health overtime, i.e. aging. Therefore, it

is necessary to take aging into account when performing structural damage assessment. Most

methods in SHM focus on looking for damage using one set of data or damage index vector from

the undamaged and damaged states. Treating the problem in this fashion leaves out the real-time

and long-duration of continuous monitoring of a structure so that gradual degradation and damage

from severe events, such as impacts, can be detected.

In many damage detection studies [21,37], the Mahalanobis distance is used to evaluate

distance among multivariate feature vectors, which can be written as

¿,.^(G'-?^S-^G'-G) (43)
where f ' is the extracted feature vector obtained from the dimensional reduction techniques,

and S is the covariance matrix of the training data. Given that training data is available to

describe the natural variation of the response signal, then, when new data vectors become

available a comparison can be made using the Mahalanobis distance measure. The similarity

between multiple feature vectors can be expressed by using a Mahalanobis distance matrix as

depicted in Figure 4.1, where 'Old' refers to training data, and 'New' to test data.
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di Old dj New dn
Figure 4.1. Mahalanobis distance similarity matrix.

To obtain a damage index value, the mean distance value of rows \-to-nt, where nt is the

number of training vectors, is obtained for all matrix columns. Once the mean values, Oj , are

obtained, the resulting feature mean vector, / . , is normalized by dividing each damage index

value by the mean of the first N1 values. This process is captured by the following equations

Dj =

I1=-

( ? N,
1 * I ¡=1

D,

(44)

(45)
; a/ Ar1)Ii^

It's worth noting that feature vectors, both training and testing, used in the distance similarity

approach must be normalized so as to take into account the normal variations of training data.

Real-life measurements contain considerable levels of noise, causing the feature vectors vary

from sample to sample. Therefore, the training data must be comprehensive of all known

operational conditions in order to cancel out normal variability from the abrupt change or damage

detection goal. In the work presented in this paper, the distance similarity matrix approach is

validated for identifying system variability by incorporating system modifications to the vibration

experimental setup.
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In normal dimensional reduction (D-R) problems, one method hardly ever captures all

characteristics of the data. To improve performance, the results of different D-R techniques, with

varying complexity, are combined, as depicted in Figure 4.2. This can not only improve the

performance, but it can also increase the robustness of the damage detection. By combining D-R

techniques we are aiming at a more accurate and clear decision-boundaries at the expense of

increased complexity. The proposed approach is based on combined classifiers [36]. The

combined-classifier pattern recognition approach has been rapidly growing in recent years in the

machine learning communities.

Dietterich [36] provides three reasons as to why combined-classifiers are better than a single

classifier. These will be presented here and applied to in the context of combining D-R

techniques. The first reason is based on simple statistics. Suppose we have a number of D-R

techniques to choose from, but since each technique has different properties, we run the risk of

choosing the wrong D-R technique for the particular application. Based on statistics, a safer

option would be to use all available techniques and "average" their outputs, which might not be

the best single result, but will minimize the risk of selecting an inadequate D-R technique.

Second, certain D-R techniques, in particular nonlinear, perform some type of random search or

optimization approach, which results in varying local minima. Given appropriate combination

technique, an approximation to the optimal manifold unfolding, in other words extracting

effective differentiating features, might be achieved. Last, it is possible that our D-R techniques

under consideration does not contain the optimal approach. For example, the data manifold might

be nonlinear, and all we have in our basket are individual linear D-R techniques. However, a set

of linear D-R techniques can approximate the nonlinearity more accurately than a single linear

technique. In addition, the ensemble of simple D-R techniques is better than using a complex

nonlinear technique, which might contain several tuning parameters. This latter reason can be
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thought of as a linearization of a nonlinear problem in system dynamics. The goal of building

combined-classifiers aims at building accurate decision boundaries. In our proposed approach, the

goal of using combined D-R techniques aims at providing extracted features that can be used to

build clear decision boundaries, which would facilitate the classification work.

Data
matrix (X)

Method 1

Ensemble
aile

Method 2

Method k

Output
matrix (Y)

Figure 4.2. Combination of dimensional reduction techniques.

In this work, we will make use of the simple product combination rule. The simplicity of this

combination rule will demonstrate the efficacy of combining D-R techniques. To suppress the

errors unique to each dimensional reduction technique, the outputs of each technique, / . , may be

combined using the product combination rule

where Kd is the number of dimensional reduction techniques being combined.

(46)
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Figure 4.3. Binary class probability distributions for damage and undamaged data, (a) Five target probability
density estimates per class, (b) Combination of the five target probability density estimates, (mean rule - dashed,

product rule - solid).

The next logical step in applying combined D-R techniques is the selection of individual

approaches for the best combination. Assuming that the data characteristics are not well known,

the ensemble of combined D-R techniques must be varied and should be capable of dealing with

both linear and nonlinear manifolds. D-R techniques can be categorized into two main areas:

linear and nonlinear. Nonlinear D-R techniques can be further separated into local and global

approaches. Taking this into consideration, in our work, we base our D-R technique selection on

categorical diversity. By choosing diverse D-R techniques, the performance of the combined D-R

technique will be improved. In addition, by not combining highly similar D-R techniques we

reduce the risk of simply combining equal extracted features, which would only result in

increased complexity but without any gains. For our work, we chose to combine PCA (linear

technique), LLE (local nonlinear technique), and MDS (global nonlinear technique). The

proposed combined D-R technique is applied to two case studies, the acoustic and vibration

experimental data.
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4.4 Case Study I: Cantilever Beam Experiment

The proposed distance similarity matrix and combined D-R technique was applied to vibration

data obtained from a base-excited cantilever beam. The in-house vibration experiment was

designed to evaluate and validate the proposed damage detection approach. Figure 4.4 shows a

picture of the cantilever beam experimental setup. The experimental aluminum cantilever beam is

of uniform rectangular cross-section. The dimensions of the beam were 50cmx3.81cmx0.635cm .

The beam was instrumented with 5-accelerometers at evenly-spaced with a 7.62cm separation

distance. A Bruel&Kjaer signal analyzer was used to collect the raw vibration data and transform

it to the frequency domain. An electromagnetic shaker manufactured by Ling Electronics, and

Endevco Type 2215 accelerometers were utilized.

Four different conditions were tested: (a) base experiment setup; (b) Mass-1 (17g) between

accelerometer 4 and 5; (c) Mass-2 (27g) between accelerometer 4 and 5; and (d) Mass-3 (54g)

between accelerometer 4 and 5. The latter setup conditions were made so as to simulate

increasing structural damage. In this case, the increase of mass has similar effects as the decrease

in stiffness, which can be easily observed in the undamped natural frequency, COn , equation of a

single-degree-of-freedom (SDOF) equation û)n=(k/m) , where k is the system stiffness and

m is the system mass.

Each condition was tested 15 times; thus, making 60 feature vectors. The frequency span was

of 1 .6 kHz with a sampling frequency of 1 Hz. The base of the cantilever beam was randomly

excited using the same frequency band of 1.6 kHz at an approximate 1.3 m/s2 RMS level.
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Figure 4.4. Cantilever beam experimental setup.

Acceleration transmissibility, ratio of input acceleration to output acceleration, data vectors

were obtained for each accelerometer. Feature selection was applied to each transmissibility

response data vector by applying peak-picking in the frequency range of interest and to the well-

separated frequency peaks in the transmissibility plots. A simple algorithm was written which

located the peaks based on a criteria standard deviation of transmissibility magnitude at frequency

f¡ over surrounding frequency range (/,. - ?/ < fi < ft + Af) , and a threshold of minimum peak-

to-peak separation distance. The resulting peak data vector was a feature vector of length 7 for

each experimental test.

4.4.1 Data Analysis and Results

The vibration data was dimensionally reduced first via peak-picking feature selection and then via

application of D-R techniques to 5 features. The cluster results are shown in Figure 4.5 for the

four experimental setups. Visual analysis demonstrates that all methods, with exception of

KPCA, were able to form well separated clusters. The KPCA method formed string like clusters,

which seem to share the same origin point. The undamaged dataset is represented with blue cross

markers and the damaged datasets are represented with red dot markers. Although clear



www.manaraa.com

99

Separation exists among the clusters, because in this case study we are analyzing more than two

class labels, via simple visual classification, it is not very clear to assign labels (identify) to the

three different damaged datasets. Assuming that training data is only available on the undamaged

state, applying a trained binary classifier would only be able to separate damaged from

undamaged datasets, but not the within the damaged datasets.

Figure 4.6 shows the combined D-R technique results for the distance similarity matrix of the

vibration data. The upper and lower 3<r standard deviation limits were also plotted. Similar to the

aeroacoustic mean index similarity results, a very clear step exists between damaged and

undamaged datasets. The mean index results indicate a range of approximately 1~1017. In contrast
to cluster analysis, Figure 4.6 clearly shows a difference among the three damaged datasets. As

the setup is changed from undamaged to Mass-1 (17g) setup, the mean index jumps significantly.

As the mass is incrementally increased to Mass-2 (27g) and Mass-3 (54g), the mean index value

also increases proportionally. The results of the distance similarity mean index in combination

with the combined D-R technique demonstrate that not only can abrupt change detection can be

achieved, but tracking of change progression can be performed, which would be very applicable

to damage assessment of time-varying structures, such as structural deterioration.
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Figure 4.5. Principal directions plot for dimensional reduction methods of undamaged (blue cross) and damaged
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Figure 4.6. Combined dimensional reduction methods. NoMass: sample 1-15, Mass-1: sample 16-30, Mass-2:
sample 31-45, Mass-3: sample 46-60.
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4.5 Case Study II: Aeroacoustic Scaled Wing

In this study, an in-house subscale wing structure model of a Boeing-767 using the Scaled

Anechoic Wind Tunnel (SAWT), see Figure 4.7, is used and tested in the anechoic chamber at the

Transportation Noise Control Center (TNCC) at UC Davis. Acoustic tests were performed at

multiple 60 RPM intervals ranging from 80-280 RPM. The armature has a radius of 102 cm,

which transforms to equivalent test speeds to a range of approximately 9-30 m/s. The acoustic

tests were recorded for two structural conditions: (1) undamaged wing; and (2) wing with single

cavity. The transducer was positioned 1cm away from the cavity at location number 11, see

sketch shown in Figure 4.8(a). In all tests, the signals were recorded in the time domain and

transformed to the frequency domain using the Fourier transform. In all acoustic experiments, the

number of undamaged samples was 200, and the number of samples corresponding to each

damage scenario was 100. The frequency span was 12.8 kHz with a center frequency at 7.5 kHz,

and a frequency step of 16Hz.

Figure 4.7. Scaled Anechoic Wind Tunnel (SAWT) for noise experiments [146].
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(a) (b)

Figure 4.8. (a) Cavity geometry and near-field microphone location, and (b) cavity flow field, 2D representation.

Two sample experiments were conducted with cavity present. First, the acoustic transducer was

mounted one centimeter away from the cavity. Second, the cavity was modified to a thru hole on

the wing, and the transducer was used to cover the hole and be the base of the cavity. Figure 4.9

shows a comparison of the latter sample experiments. Although, the acoustic transducer was

placed only a short distance away from the cavity, no clear visual indication of resonant peaks

can be observed from acoustic measurements. For the case when the transducer was placed

directly behind the cavity, the resonant peaks are clearly visible. Therefore, feature extraction

techniques must be applied to measured data in order to determine the presence or absence of

structural cavities.
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Figure 4.9. Frequency response (a) transducer 2.54 cm from cavity; (b) transducer as base of cavity, 250 RPM.



www.manaraa.com

103

4.5.1 Data Analysis and Results

The newly proposed approach is applied to the test results of the aeroacoustic experiment. The

high-dimensional frequency response data for the 200 and 100 datasets of the undamaged and

damaged cases, respectively, were dimensionally reduced to 5 features. The original dimensional

space was 801 features, a number corresponding to the number of 16Hz divisions in the available

12.5 kHz span. The extracted feature subspace was chosen to be considerably smaller, because in

our case, we are not concerned with the loss of information from the dimensional reduction since

data reconstruction is not one of our goals.

The mapping results for the 80-140 RPM and experiments are shown in Figure 4.10 and

Figure 4.11, respectively. The results in Figure 4.10 and Figure 4.11 exhibit 'string' line clusters

within the damaged and undamaged datasets. This clustering phenomenon is due to the fact that

individual measurements were taken to reproduce approximately 35 feature vectors, or, in other

words frequency response. These measurements were concatenated to produce the 200 and 100

data vectors for the dimensional reduction analysis. Therefore, each string corresponds to an

individual measurement. The mapping results demonstrate that the dimensional reduction

techniques are sensitive enough to show the teçt-to-test variability. The mappings show the first

three principal directions obtained from the corresponding dimensional reduction technique.

Visual inspection of Figure 4.10 shows all D-R techniques failed at creating a clear cluster

separation between damaged and undamaged data. In Figure 4.11, mapping results for a rotational

speed of 200-260 RPM for the wing with and without cavity. In contrast to Figure 4.10, some

techniques demonstrate cluster separation between the damage and undamaged datasets. Visual

analysis shows that PCA, LLE, KPCA (with Gaussian kernel), and LTSA methods demonstrate

possible 3-D hyperplane separation between damaged and undamaged data points. The MDS and

DM methods obtain partial cluster separation, but the separation is nonlinear, for which it would
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be more difficult for a classifier to generate such a hyperplane. From this experiment, LLE

outperforms the other methods, because the distance created between damaged and undamaged

data is larger, thus minimizing the potential for false-positive and false-negatives results. In

addition, the cluster spread for damaged and undamaged states is minimal, which would

minimize false-classification. Using visual analysis of the D-R results as a classifier demonstrates

the difficulty in creating decision boundaries, which would allow proper classification of all data

points. Therefore, blind application of D-R techniques for feature extraction does not guarantee

the facilitation of dataset classification.

The distance similarity matrix approach was applied to the individual D-R feature vector

outputs. Figure 4.12 and Figure 4.13 shows the similarity results at the 200-260 RPM range for

LLE and PCA approaches. Figure 4.12(a) and Figure 4.13(a) show the similarity matrix in

pseudocolor or "checkerboard" plot format. The values of the elements in the similarity matrix

specify the color in each cell of the plot. As was previously shown, the diagonal of the matrix is

expected to be of value 1. The results obtained using the LLE technique show that similarity

matrix exhibits two very distinct color ranges, blue and red. The shift in color from blue to red is

due to the strong shift in similarity element value range. Using the mean index value of the

similarity matrix, the linear plot of Figure 4.12(b) was obtained. Upper and lower 3s standard

deviation limits of the training data were also plotted as dashed lines to capture the 99.7%

assumed normal distribution of the data. The lineai· plot shows a very clear jump after sample

number 200, which indicates the beginning of the damaged feature vectors. As can be seen from

the plots, the mean index value ranges from 1 to a scale of 1024, which indicates an immense
dissimilarity. After sample number 270, the lineai· plot drops below 4, but remains above the

upper standard deviation line, which can be used as a simple outlier detection metric or classifier.
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Figure 4.10. Principal directions plot for dimensional reduction methods of undamaged (blue cross) and
damaged (red dots) data with feature selection applied at 80-140 RPM.
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Figure 4.11. Principal directions plot for dimensional reduction methods of undamaged (blue cross) and
damaged (red dots) data with feature selection applied at 200-260 RPM.
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Figure 4.12. Similarity results of dimensionali} reduced data - undamaged (sample 1-200) and damaged (201-
300), using LLE approach and feature selection, (a) Mahalanobis distance matrix; (b) Mean index value results.

RPM=200-260.
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Figure 4.13. Similarity results of dimensionally reduced data - undamaged (sample 1-200) and damaged (201-
300), using PCA approach and feature selection, (a) Mahalanobis distance Correlation matrix; (b) Mean index

value results. RPM=200-260.
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Figure 4.14. Combined mean index value results for PCA, LLE, MDS, at each speed: (a)80-140, (b)100-160,
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Figure 4.13 shows the results obtained using PCA for the distance similarity matrix

calculations. In contrast to LLE results, the range of the similarity element values ranges from

1-130. Again, upper and lower one standard deviation lines were plotted for the training data. In

this case, PCA fails to provide a clear jump in mean index similarity value after sample number

200. Only samples 235-270 demonstrate a jump in dissimilarity, but again after sample 270, the

mean index value drops very close to 1 .

Evaluation of the results shown in Figure 4.12 and Figure 4.13 demonstrate that the similarity

matrix approach indeed provide clearer separation between damaged and undamaged dataseis.

Comparison of LLE and PCA similarity results show that a blind selection of D-R technique can
A'

be inefficient due to the variability from experiment to experiment. In these results, the nonlinear

D-R method, LLE, performed much better than the standard PCA method in differentiating

damaged and undamaged datasets. This result is critical since PCA is the predominant D-R

choice for feature extraction in the area of structural damage assessment. Therefore, unless the

user has significant experience in feature extraction, the damage detection monitoring system is at

risk of providing multiple false-diagnosis.

Figure 4.14 shows the results of the combined D-R technique at multiple speed ranges.

Comparing the results in Figure 4.14(g) to the LLE results of Figure 4.12(b) demonstrate similar

characteristics but the combined D-R technique has a minimum value after sample number 270 of

10, while the LLE method had a minimum number of 4. With exception to Figure 4.14(d), the

combined D-R technique was able to differentiate between damaged and undamaged datasets

very clearly. In Figure 4.14(d), at the sample number 200, the jump in mean index magnitude

occurs, but drops down to levels inside the upper standard deviation line, which is not a desirable

property. Although indication of an abrupt change is shown in Figure 4.14(d), the mean index

value in this instance would not provide reliable information for classification. Analysis of the
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raw decibel, dB, acoustic data was performed to investigate as to why differentiation was not

clearly achieved for speed range 140-200 RPM.

Table 4.1 shows the mean dB levels for the undamaged (U) and damaged (D) datasets at all the

specified speed intervals. The difference of the mean values is also given, which shows that with

exception to the 140-200 RPM interval, all other speed intervals result in an increase of mean dB

value when going from undamaged to damaged. In addition, the magnitude of the dB difference

value is the second smallest. The smallest difference magnitude is obtained in the 100-160 RPM

interval, which is an interval that also demonstrates low mean index values after sample number

270, as shown in Figure 4.14(b). Therefore, the lack of similarity separation between damaged

and undamaged datasets at the 140-200 RPM interval is possibly due to the significant overlap

that exists between both classes, and to test-to-test variability.

Table 4.1. Mean standard deviation of acoustic frequency response for each speed range.

RPM I 80-140 I 100-160 I 120-180 I 140-200 1 160-220 I 180-240 I 200-260 I 220-280
Mean s - U (dB) 6.4640 5.8199 5.4062 5.1459 4.5606 4.2459 4.2459 3.8482
Meano-D(dB) 6.6654 5.8865 5.5499 5.0752 4.7154 4.4801 4.4801 4.1547
Difference (dB) -0.2014 -0.0666 -0.1437 0.0706 -0.1548 -0.2342 -0.2342 -0.3065

4.6 Summary

The results of two case studies presented in this paper support that damage assessment based on

the proposed ensemble of dimensional reduction techniques can be used to effectively detect and

track spontaneous damage in structures. The proposed approach is based on a Mahalanobis

distance similarity matrix of training and test feature vectors. Notable importance is given to

obtaining feature vectors via diverse dimensional reduction methods, and their ensemble. Two

case studies were conducted. The aeroacoustic experimental studied impact damage detection in a



www.manaraa.com

110

sub-scale wing structure via pattern recognition of acoustic measurements under varying

excitation levels. The detection of structural cavities was achieved via dimensional reduction of

multiple time measurements of frequency response dataseis. From the results obtained, we may

conclude that under test-to-test variability and with no clear visible changes of the frequency

response, the distance similarity matrix method with dimensional reduction techniques can serve

as a means to detect the presence of a cavity in the near-field of an acoustic transducer. The

vibration experiment studied the detection of abrupt structural changes and their variation. The

structural changes simulating damage were induced by localized mass modifications. By applying

the proposed damage detection approach, clear indication of damage was obtained with zero

false-positive or false-negative.

The idea of integrating decisions of several diverse diagnostic systems into an ensemble, which

improves upon the performance and robustness of the individual members, is novel. This chapter

addressed the issue of aleatory uncertainty in damage diagnostics. Continuing chapters will

address the examination of epistemic uncertainty in damage diagnostics of vibration experiments.
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Chapter 5

Classification of Dimensional Reduction Results in Damage Assessment

In this chapter, we present a classification study of dimensional reduction techniques for

structural damage assessment of time-varying structures under uncertainty. Discrete tracking of

the modal parameters and the strain energy damage index (SEDI) method is employed to perform

damage localization and assessment. Assessment of spontaneous damage in deteriorating

structures is important as it can have potential benefits in improving their safety and performance.

Most of the available damage assessment techniques incorporate the usage of system

identification and classification techniques for detecting damage, location and/or severity;

however, much needed work is needed in the area of dimensional reduction in order to compress

the ever-increasing data and facilitate decision-making in damage assessment classification.

Comparison of dimensional reduction and classification techniques is presented and evaluated in

terms of separating damaged from undamaged data sets under two types of uncertainty, structural

deterioration and environmental uncertainties, via finite element model simulations. The use of

recursive principal component analysis for detecting and tracking structural deterioration and

spontaneous damage is evaluated via computational simulations. The results of this study reveals

that dimensional reduction techniques can greatly enhance structural damage classification under

uncertainties.

5.1 Introduction

In the past two decades, significant effort has been made towards the development of smart

damage diagnosis and prognosis systems in order to increase safety and performance of dynamic

structures as well as minimizing their maintenance cost [37]. Spontaneous damage events on
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flight vehicles represent a threat to for example wing structure. Sources of discrete damage

include hail impact, lightning strike, transport and handling, and foreign objects. In addition,

aircraft are exposed to severe operating environments during flight. The high number of flight-

cycles causes permanent deteriorating damage, i.e. aging [101]. Therefore, it is necessary to take

deterioration into account when performing structural damage assessment of in-flight vehicles.

Most methods focus on looking for damage using one set of data from the undamaged and

damaged states. Treating the problem in this fashion ignores the real-time and long-duration of

continuous monitoring a structure so that gradual degradation and damage from severe events,

such as impacts, can be detected.

In real-world applications of structural health monitoring (SHM) systems, uncertainty may take

the form of component and/or system variability, environmental and operational conditions, data

acquisition errors, and data interrogation errors, to name a few. In order to account for the

uncertainties involved in damage assessment approaches, pattern recognition techniques have

been studied to statistically distinguish structural conditions [101,157]. Numerous SHM works

are available on the use of statistical analysis to categorize damage in structures, such as

statistical process control, defining confidence intervals for damage indices, and statistical pattern

analysis. In most pattern recognition approaches the raw data is pre-processed to extract damage

discriminant features, for example using principal component analysis (PCA)

[59,80,94,95,156,182,183].

Given large sets of data with multiple features, there exists significant amount of redundancy

or unnecessary features which reduces the effectiveness, accuracy and understandability of the

data mining results. As such, data compression and dimensional reduction techniques may be
utilized to reduce the size of dataseis. One must understand that uncertainties will arise from the

way data is truncated and compressed during the removal of unnecessary data features, feature
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extraction, feature selection and noise cleansing. Uncertainties are inevitable, but they can and

should be systematically addressed and accounted for. In general, data mining must performed in

order to facilitate the decision-making process of classification. The performance of the classifier

depends on the interrelationship between data sets, number of features, and classifier complexity.

Increasing number of data and dimensions results in what is known as "curse of dimensionality,"

which leads to the "peaking phenomenon" in classifier design. In other words, more data does not

necessarily mean more information due to the dependency and correlation of many

multidimensional dataset. Jain et al. [75] states that increasing number of features may in fact

degrade the performance of a classifier if the number of training samples that are used to design

the classifier is small relative to the number of features.

This section presents a classification study of features extracted via dimensional reduction

techniques for spontaneous damage diagnosis that yields reliable results under multiple

uncertainties, including the aging effects under nominal operating conditions. The dimensional

reduction techniques of principal component analysis (PCA), local linear embedding (LLE), local

tangent space analysis (LTSA), kernel PCA (KPCA), and diffusion mappings (DM) will be

utilized in this simulation work. The latter dimensional reduction methods have already been

described in Chapter 4. In contrast to the analysis presented in Chapter 4, the damage assessment

results presented in this chapter will include quantitative damage detection and localization based

on the machine learning process known as classification. Due to the uncertainties involved in

obtaining robust and reliable damage estimates, modal analysis and pattern recognition

techniques will be used to properly categorize spontaneous damage events in deteriorating

structures.



www.manaraa.com

114

5.2 Dimensionality Reduction

The problem of dimensionality reduction in SHM appears when the system response data are in

fact of a higher dimension than tolerated or desired. Structural damage assessment is based on

identifying and extracting damage feature indicators that are robust to system uncertainties, such

as high signal-to-noise (SNR) ratios, system and operational variability. Furthermore, it is desired

that such extracted features are of minimal size to aid classification and reduce computational

complexity. Therefore, in general, it can be useful or even necessary to first reduce the

dimensionality of the data to a manageable size, and then feed the reduced-dimension data to the

damage classification system.

Ju ?

<3 I

High-dimensional
data

Dimensioality
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Low-dimensional
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Linear
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LTSA

Others

Processing
System

Figure 5.1. Dimensionality reduction.

Dimensional reduction is important in damage assessment since it facilitates classification,

visualization, and compression of high dimensional data. The process of dimensional reduction is

depicted as a flow chart in Figure 5.1. The application of dimensional reduction techniques in

feature extraction has already been introduced and reviewed in section 4.2 with information

regarding each particular method shown in Figure 5.1. In this section, an extension of
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dimensional reduction methods, in particular the PCA approach, to noise reduction is

presented. Because we are interested in the integration of these techniques with a continuous

structural monitoring system, we present a recursive dimensional reduction approach for adaptive

structural health monitoring.

5.2.1 Noise Reduction

As described in section 4.2, PCA transforms the original X dataset of size D ? ? to a reduced

data matrix Y of size d ? ? , which is a linear transformation defined by Y = HX , where //isa

dxD linear transformation matrix whose rows are the eigenvectors, i.e. principal components, of

X . Matrix H is a linear mapping formed by the first d principal eigenvectors of the sample

covariance matrix by solving the following eigenproblem

COv(X)H = AH (47)

Alternatively, the covariance matrix eigenvectors can be calculated via singular value

decomposition (SVD) of the covariance matrix of the features as follows

XXr = UZ2If (48)

where U is an orthonormal matrix, S = diag(Àì, A2, ...,An) is a diagonal matrix whose elements

are the singular values. By definition, the singular values are written in decreasing order

A1 > A2 > ... > A0 . Generally, the first k < d principal components contain the largest variances, and

one can conclude that the most data information occurs only in the first k dimensions.

The data compression capability of PCA can be extended to noise suppression. The basic idea

is that the variance captured by the least important principal components is noise which should be

rejected. To original data X can be reconstructed with reduced noise as follows

X = X(HH7) (49)
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The degree of noise reduction is controlled by the number of principal components

retained.

The main drawback to PCA is the computation of the covariance matrix, which becomes quite

demanding with increasing number of features. PCA is a linear technique since it embeds the data

into a linear subspace. The objective of PCA is to find a linear transform for each class using the

training patterns for that class in the feature space.

5.2.2 Recursive Dimensional Reduction Approach

Major limitation of static-dimensionality reduction is that it is time-invariant, while most

engineering structures contain time-varying characteristics due to aging, maintenance, and sensor

drifting. The time-varying characteristics of structural properties include: (i) changes in the mean;

(ii) changes in the variance; and (iii) changes in the correlation among system variables.

When a time-invariant PCA model is used to monitor impact damage events, false alarms and

misses would often result due to the accumulation go structural deterioration. In this paper we

present the use of recursive PCA (RPCA) to model the non-stationary statistics of our structural

model. Given a random process

x„ e 3ilxD (50)

its recursive mean can be estimated by

m„=mn^ +(!-«) x„ (51)

where or is an adaptive (forgetting) factor, which puts more weight on recent samples than on

older samples. The forgetting factor is a tuning parameter that be varied according to how fast the

observed process is changing. The covariance matrix can be estimated as

C„=tfC„_1+(l~tf)(x„-A„)(x„-m„)r (52)
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Given Cn , we can perform PCA and obtain corresponding eigenvectors, where we keep N

largest eigenvalues. To ease the computational burden of recursive eigen-decomposition, the

following algorithm based on the inner-product matrix [93] has been adopted. Given an initialized

set of eigenvectors, f^_? , and eigenvalues, ?^\ , we can write the covariance matrix as

C-BBT
? ?

where B„ is

(53)

B„ =

Based on the Bn matrix, the inner product-matrix can be formulated to obtain

(54)

An=BnBn (55)

and obtain its eigenvectors, y/f and eigenvalues Xf . As in regular PCA, the eigenvalues are

sorted and corresponding N eigenvectors are kept. The eigenvectors of covariance matrix are then

obtained as

«) = ¿<1>-«2B (0t? « «Vn (56)

The proposed RPCA approach is useful in that it adapts to a time-varying monitored structure.

Given this recursive approach, the PCA dimensional reduction technique can be used in time-

varying structures in order to perform damage detection by tracking extracted features over time

and finding outliers. Once outliers have been detected during the monitoring process, further

analysis, such as system identification via modal analysis, can be performed to localize and assess
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the source of the outlier or damage. The performance of RPCA is evaluated in the results

section using a time-varying simulation.

53 Classification (Pattern Recognition) of Extracted Features

In this section, we formalize the process of conducting damage classification based on pattern

recognition. In the previous chapter, classification of damage detection was performed visually.

Once the extracted parameter that was used to detect if damage is present or not falls outside

statistical variance control lines, then we can indicate that damage could be present. This simple

classification approach relies on a single feature and human input for classification. In more

complex classification problems, there are multiple features are used to classify a dataset or

object, which can become problematic for a human when the number of features are numerous.

For such situations when clear and quantitative results are necessary, the human input can be

replaced by classification algorithms based on statistical pattern recognition.

The goal of classification algorithms is to assign a class label to a new object or observation

from a set of predefined classes, such as color class - red, blue or green. The classifier which

should perform this operation is based on a set of example objects. This type of classification is

known as supervised classification with all known class labels known. In our work, we will not

focus on this classification problem, but instead we will focus on what is known as the one-class

classification. In damage detection, the class label of normal operation or response is the known

class. When damage occurs, the particular label or type of the damage can be difficult to identify

since the particular signature of each damage type can vary significantly. For example, the

structural response due to cracks, changing boundary conditions, loose components, etc, are not

exactly the same. In damage detection classification, the goal is to simply find a clear
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discriminant boundary between healthy structural response and unhealthy, regardless of what

is causing the unhealthy response.

In one-class classification, it is assumed that only information of one of the classes, the target

or healthy class, is available. Only training data on healthy structural response can be used for

classification and that no other information about the other class of outlier objects is present or

available. The task is then to define a boundary around the target class, such that it accepts as

much of the target objects as possible, in other words minimize false-positive, and minimize the

chance of accepting outlier objects, in other words minimize false-negative.

A major issue in damage classification is that many classification algorithms assume that for

training, class labels, i.e. information on each class, are available, but in practical damage

assessment applications, labels of damaged data is not available unless destructive testing is

performed. As a result, direct application of supervised classification approaches is not always

possible.

Table 5.1. Confusion matrix.

Predicted

Hu HD
Undamaged (U)

Damaged (D)

True Negative (TN)

False Negative (FN)

False Positive (FP)

True Positive (TP)

Consider the binary hypothesis testing problem where a sequence of independent identically

distributed ( Ud ) damage index vectors, xk , are observed, then the likelihood ratio test (LRT)

function is denoted as

m ->
Y[L(xt) T(m) (57)
k=\ <
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where HD denotes the damage state, H11 the undamaged state, and -r(ra) is a predefined (if

prior information exists) damage threshold.

For all classifiers, two types of errors have be minimized, mainly the false-positives and the

false-negatives. Table 5.1 shows the possible classifications for a one-class classification

problem. In most applications, the minimization of false-diagnosis will not reach 0. Therefore, an

acceptable error threshold must be selected to reject outliers. By varying this threshold, and

measuring the error on the outlier objects, a receiver operating characteristic (ROC) curve can be

obtained, see Figure 5.2. This curve shows how the fraction of false-positives varies with true-

positive. For one-class classifiers, the goal is to obtain perfect true-positive, y-axis value of 1 in

ROC curve, and zero false-positive, x-axis value of 0 in ROC curve. As mentioned earlier, this

operating point is not always possible, and classifier designer must choose an acceptable ration

between accepted outliers and accepter targets, see Figure 5.2.

operatilig
point

Undamaged j DamagedK "

X (Damage Feature)

outliers accepted (FP)

Figure 5.2. Example of binary classification with ROC curve.

Performance of classification schemes is governed by the amount of information about the

classes involved, i.e. damaged and undamaged. In this work, m samples for each signal feature
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were taken. To train the classifier, ml 2 samples were used to train unsupervised classifier

parameters, and the rest of the data were used for classification test and evaluation. The

performances measures for binary classification are shown in Table 5.1, and they are defined as

follows:

TP
Damage Detection Rate (DDR) = (58)

FN + TP

False Alarm Rate (FAR) = ——— (59)
TN + FP

TP + TNOverall Accuracy (OA) = (60)
TP + TN + FP + FN

FP + FN
Overall Miss (OM) = (6 1 )

TP + TN + FP + FN

5.3.1 Individual Classifiers

In this work, the following classifiers on the damaged class are evaluated: (1) k-Nearest Neighbor

(kNN), (2) Parzen density, (3) Expectation-Maximization (EM), and (4) k-Mean, (5) combined

mean of (l)-(4), and (6) combined product (l)-(4) classifiers. For classifiers not estimating a

density, its output is mapped to a probability before used in the combined classifiers. AU of the

methods analyzed in this work are well known in traditional pattern recognition, so they will only

be discussed briefly. Of the multiple classification approaches, we have chosen to use the selected

subset of methods because they cover a broad range of possible methods. For further information

on classifiers please refer to [69,87].

The most straightforward method to obtain a one-class classifier is to estimate the variance or

density of the training data. When a probability model is assumed and the training data is

sufficient, this approach is very advantageous and reliable. The most common distribution used is

the Gaussian distribution, as shown in Figure 5.3. The method is very simple and it imposes a
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strict unimodal and convex distribution model on the data. The rejection region or outlier

class area is typically determined according to a variance value, such as ?s , where s is the

standard deviation value.

?/ \ accepted
?? SlOIi

\ rejected

__ L
Figure 5.3. One-dimensional Gaussian distribution classification.

Because in most cases, we cannot assumed normally distributed data, the Gaussian distribution

one-class classification approach is not always reliable.

The Parzen density estimation method (Parzen, 1962) estimates the density of a mixture of

Gaussians kernels centered on the individual training objects, with diagonal covariance matrices

S,

1 «--?
M-O=TfZM*;*-'^) (62>N ?

where N is the number of samples, p(x) is the estimated probability density of classified

variable ? . The Parzen density estimation approach is a refinement of the histogram approach

which partitions the training data, i.e. known healthy condition data, into sub-regions, and counts

the number of samples that fall in each of these partitions or bins. The estimated probability

density within a bin is proportional to that count. This technique works fine if the number of
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samples within each bin is sufficiently large. Hence, with a small training set, or a large

dimension of the measurement space, the resolution of the estimation will be very poor.

In Parzen estimation, each sample in the training set contributes in a like manner to the

estimate. The estimation process is space-invariant. Therefore, a there is always a trade-off

between resolution and variance. The k-Nearest Neighbor (kNN) classifier (Duda and Hart, 1973)

is an estimator with high resolution in regions where the training set is dense, and with low

resolution in other regions. The kNN classifier is based on a majority vote by using the distance

to its neighbors, with the object or sample being assigned a class most common amongst its k

nearest neighbors. Let R(x) be a hypersphere (region around x) with volume V(x) and centered

at ? . Suppose that the radius of the sphere around ? is selected such that it contains exactly k

samples. The estimate of the density is given by

'"'WM
where Nk is the number of samples in the training set taken from a total number of samples

Ns . Combination with a uniform cost function produces the following suboptimal classification

Z^ = argmax *' ^- (64)
where Lmax is the chosen class. The class assigned to a sample ? is the class with the

maximum number of votes coming from k samples nearest to ? .

The last method used for classification is a clustering method known as c-means (Bishop,

1995). This clustering technique basically determines the distances between objects. C-means

clustering assigns each object randomly to one of the available clusters. Next, the mean of each

cluster is computed as follows
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where Lc is the c"' cluster. Given the new means of each cluster, each object x¡ is reassigned

to the cluster with the closest mean µ0 . This process is repeated until the means of the clusters do

not change anymore.

The c-means method is dependent on the distance measure between the objects xt and cluster's

mean µ0 . The main advantage of k-means is that it is very easy to implement. On the other hand,

it is an unstable approach. Depending on the random initialization, the algorithm will converge to

different local minima. This problem generally occurs more when high number of clusters are

requested. In our particular application of binary classification, there are only two clusters -

damaged and undamaged.

The last classification method used in our analysis is known as the expectation-maximization

(EM) algorithm. The EM classifier is a based on finding the maximum likelihood estimates of

parameters in statistical models, where the model depends on unobserved (latent) variables. The

EM method contains two iterative steps. The expectation step computes the expectation of the

log-likelihood evaluated using the current estimate for the latent variables, and the maximization

step computes parameters maximizing the expected log-likelihood on the expectation step.

The log-likelihood is defined as

L(U) = In ?(?\?)^??S?(?\?,?)?(?\?) (66)
Z

where ? is the parameter vector, ? represents the hidden variables, and ? is the observed data.

The objective is to choose ? such that p(x \ T) is a maximum, which is known as the Maximum
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Likelihood Estimate (MLE). The EM is an iterative procedure for maximizing L(O), so after

the n"' iteration, the current estimate for ? is given by Bn . The update value is given by

0»+i =argniax{£M {lnp(x,z|0)}} (67)
The EM algorithm thus consists of the following iterations:

1 . ?-Step: Determine the conditional expectation E, ß {in p(x,z\ #)} .

2. M-Step: Maximize this expression with respect to ? .

53.2 Combined Classifiers

A drawback to single classifiers is that hardly do they ever fit the data distribution optimally. In

addition, using the best classifier and discarding the rest of the lower performing classifiers might

waste valuable information. To improve classification performance, multiple researchers [36,58,

75,87] have shown that individual classifiers may be combined, which may also increase

robustness and generalization.

The possible ways of combining the outputs of multiple classifiers or information sources in

data fusion depends on what type of information is extracted from the individual classifiers. Jain

[75] provides a review of classifier combination schemes and their selection process. Some of the

well know classifier combinations are product rule, sum rule, majority vote, Naive Bayes

combination, Singular Value Decomposition (SVD), neural networks, adaptive weighting,

bagging and boosting. Commonly a combined decision is obtained by just averaging the

estimated posterior probabilities (output distribution) of different classifiers, which has been

shown to give very good results. When the Bayes theorem is adopted for the combination of
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different classifiers, under the assumption of independence, also known as naive-Bayes, a

product combination rule automatically is obtained.

In this work, the product rule is adopted to combine the individual classifiers. To suppress the

errors unique to each classifier K; , the outputs of each technique may be combined using the

product combination rule

NK NK

??, =p(L1,L2,...,LNK\ci) = ]lp(li\ci) (68)
1=1 1=1

where NK is the number of individual classifiers being combined, L¡ is the class-label

produced by classifier, and c¡ is the true class.

The product combination rule is apt for different, class-conditional independent feature spaces

where classifiers make small estimation errors. The Bayes product rule classifier has been found

surprisingly accurate and efficient in many experimental studies. The surprise comes from the

fact that the objects being combined are seldom independent, which violates the independence

assumption. However, it turns out that the classifier performance is quite robust, even in the case

of dependence.

5.4 Damage Assessment Based on Strain Energy Damage Index (SEDI)

Vibration-based methods are based on the fact that damage alters the dynamic properties of

structures, such as natural frequencies, damping, mode shapes, and operational deflections shapes

(ODS). Measurement and tracking of such modal properties can provide information regarding

structural health condition.

Damage detection based on vibration extracted features can be performed using varying

technique. In this study, we focus on using the frequency response and mode shapes as the
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features used in the dimensional reduction analysis. First set of features is based purely on the

frequency response vector f = [/,,/,,...,/„] with a frequency span of /„ Hz, dimension nxNE

(NE is total number of elements) and a sampling frequency of (/·-/¦_,) Hz. Complete usage of

the whole frequency response vector as the input to each dimensional reduction method is made

under the assumption of complete ignorance of system informative modal features, such as

resonant frequencies. The presence of damage in a structure would be indicated by changes in the

frequency response.

The second set of features is based on extracted structural mode shapes. Compared to

frequency-based damage detection, extraction of structural mode shapes requires knowledge of

resonant frequencies and is a system identification method. Mode shape extraction process is in
itself a dimensional reduction process. The advantage of using mode shapes for damage detection

is that features with greatest system information are pre-selected. On the other hand, damage

detection based on mode shapes runs the risk of valuable information being lost due to the data

reduction and system identification process. In contrast, direct application of the frequency

response for damage detection avoids initial risk of lost information since all acquired frequencies

are used in the damage detection process. Comparison of these two feature sets based on damage

detection performance is conducted in this study.

Damage detection and localization of continuous structures based on the strain energy damage

index (SEDI) method developed by Stubbs and improved by Kim et al. [84] utilized the modal

strain energy distribution in a structure due to damage. In this work, the damage index method is

utilized for the analysis of mode shapes. This method requires that mode shapes before and after

damage are known, and only a few modes are required; thus applying a reduced-order model

approach.



www.manaraa.com

128

For beam elements, Nnm measured modes and Ne number of elements, the damage index,

ß , is written as

ß. =2-
iu, +?^

______________*=1 J

?^>S^;
í=i ? *=? y

(69)

where £ represents the Young's modulus, "*" indicates the damaged structure, U- is the i'h

modal strain energy, and ?? =F,?;0F, where F, is the /'* mode shape and Cj0 is a matrix

involving only geometric properties obtained from K;. = £;Cj0 , which is the /* contribution to

the system stiffness matrix.

If the structure being considered is an linear elastic beam of length L and with the assumption

of negligible shear strain, then it can be shown that the modal strain energy representation of Eq.

(69) becomes

ß =^r = -
¡' (F-J dx+ ¡(f:;?))2 dx /^fdx

(70)

\SM {f](?)) dx+ ¡(f:µ)2 dx //(f;µ)?
V 'j

Once damage is located at the /* member, damage severity of the f element is estimated

using the following equation

^ = 1M-1

where damage severity is indicated as the reduction in the /* member if ai < 0 .

(71)

Based on this damage index, information is obtained on the location and severity of the damage

from changes in the mode shapes of the structure under analysis. As a correlation function, an «;
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value close to 0 indicates full correlation between damaged and undamaged /* structural

member, and a value close to -1 indicates no correlation.

5.5 Case Study: Cantilever Beam Simulation

Structural damage is represented by reduction in the elemental stiffness. Uncertainty is inherent

between modeling predictions and test results. Uncertainties are modeled as random measurement

noise, time-varying structural parameters, and environmental, i.e. temperature, variations. The

motivation of this investigation stems from the impact damage potential of in-flight vehicles in

civilian and military applications. The relative large wing span and high aspect ratio of many in-

flight vehicles, such as Unmanned Air-Vehicles (UAVs), makes wings highly susceptible to

impact damages. To demonstrate the proposed damage assessment approach, the wing is modeled

as an isotropic aluminum cantilever beam with an aspect ratio of 9.84 and constant rectangular

cross-section, as shown in Figure 5.4. The structural system consists of 50 elements, and only

vertical motion is measured at each nodal point. Frequency responses are generated using the

software packages MSC.NASTRAN with a frequency span of 3 kHz and a sampling frequency of

1 Hz. To simulate unavoidable data acquisition noise, a bandwidth limited white noise signal will

be added to all measuring points. For the parameters shown in Figure 5.4, values for the

geometric properties of the scaled wing model were assigned as follows: L = 0.5m ,

h0 =3.2xl0"3m, and C0 = 2.032x10"' m .
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The damage diagnosis will be evaluated in two stages. Via numerical simulation, the pre- and

post-damage transient and modal responses of the test structure are measured. The first 10 mode

shapes (feature set 1) and natural frequencies (feature set 2) are considered as the vibration

features. To account for the presence of random effects, noise is added. Table 5.2 shows the

damage scenarios studied in this work. To train the unsupervised classifiers on the natural

variation due to noise content of the undamaged features, 100 samples were taken using

undamaged structure with noise content. To test the classifiers, 100 samples of damage feature

vectors were generated. The reduced stiffness damage scenario is representative of impact

damage without penetration and/or loss of structural mass. The change is stiffness due to damage

will be modeled by a reduction in the modulus of elasticity of the section. The degree of damage

is then related to the extent of reduction in the modulus of elasticity. This method requires only a

simple modification in the finite element model. A study will be conducted with 5% to 20%

reduction of the modulus of elasticity, imposed in turn on discrete number of elements for the

analytical model. Finally, to study the effects of structural deterioration, the modulus of elasticity

is modeled as a non-increasing function of time. The deterioration rate is assumed to be much

slower than the impact damage period.
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For the second stage of damage estimation, the strain energy damage index (SEDI) method

will be applied when signal noise is present. Because the damage index feature is sensitive to

changes in mode shapes, which allows it to estimate damage, it is also highly susceptible to noise

content. Kim and Stubbs [84] utilized a Z-test criteria to eliminate relatively small false-positives

due to noise content. The Z values are obtained by calculating Z; = {ßj -ßi)/ai where fi¡ and a¡

are the mean and standard deviation of the collection of damage indicators ßj values,

respectively. The decision criteria is given as follows: if Zj < 2 then /?; =0, else if Z; > 2 then

ßj = ßj . The main drawback with this simple statistical criteria to eliminate false-positives is that

it assumes that damage severity values of true-positive damage locations will always be

significantly bigger (in magnitude), which is not always the case due to noise content. In our

approach, prior to performing the statistical Z-test criteria, we make the assumption that a small

number NDI of damage index vectors can be obtained following the spontaneous damage event.

For each damage index extraction, the modal data was randomized separately; thus achieving

varying noise content. By doing so, dimensional reduction can be applied as a noise reduction

technique at each element value or, of the damage index method. The assumption of having the

capability to calculate multiple damage index vectors is required to increase the classification

robustness based on higher number of observations.

Table 5.2. Damage scenarios investigated.

Case Damaged Element (s)
Location

Corresponding
Severity (%)

Noise (%)

1,2,2.5,3.5
-10 ,2,2.5,3.5

9,34 -10,-5 1,2,2.5,3.5
25 -10 1,2,2.5,3.5

4, 14, 19, 39 -20,-10,-5,-20 1,2,2.5,3.5
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To study the effects of structural deterioration and temperature effects, the modulus of

elasticity is modeled as temperature-dependent with a constant rate of deterioration. To simulate

varying temperature conditions, temperature changes are assumed to be a random variable

uniformly distributed between -21 to 50 0C. In addition, a deterioration rate of 1% over the span

of the simulation is applied to simulate the slow deterioration experienced by structures. Given

this setup, RPCA is then applied to the first 10 natural frequencies of the cantilever beam model.

For this simulation, damage is induced after 700 data vectors. For the second stage, having

detected the presence of damage, the damage index vector is utilized to evaluate the location and

magnitude of damage. As in the first stage, to train the unsupervised classifiers on the natural

variation of the measured features prior to damage, 100 samples will be evaluated.

In the numerical examples, noise is simulated by adding pseudorandom numbers on the

simulated frequencies and mode shapes. To simulate unavoidable data acquisition noise, a

bandwidth limited white noise signal will be added to all measuring points. The amplitude of this

noise is denoted as the noise-to-signal ratio, NSR = 1 / SNR , which is a ratio of the induced random

noise series to the amplitude of the mode shapes or frequencies.

5.6 Results and Discussion

5.6.1 Damage Detection

The variation of the principal component (Dl), extracted feature for which the data varies the

most, for each dimensional reduction technique is illustrated in Figure 5.5 and Figure 5.6 for the

natural frequencies and mode shapes, respectively, using only 70-undamaged and 30-damaged

samples. The principle direction data was normalized by removing the mean of the reference
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undamaged data set. Finally, upper and lower control limits (dashed lines) corresponding to

one standard deviation, which provides a quick look at data outliers, were also plotted.

Figure 5.5 shows how the principal direction of each dimension reduction technique is affected

when damage corresponding to Case 2 of Table 5.2 is introduced after 70 samples. Comparison

of the separation between undamaged and damaged samples created by each dimensional

reduction technique does not render clear superior mapping technique. By using the natural

frequencies as damage indicators, the damage classification would yield significant number of

false-diagnosis due to the uncertainty in the reported results. Figure 5.6 shows the results obtained

using the mode shape features as damage indicators. The principal feature obtained from each

dimensional reduction technique remains outside the upper and lower control limits of normal

operation with given noise levels.

Table 5.3 provides the false-negative count of the damaged data samples that fall within the

one standard deviation control limits for each dimensional reduction method and vibration feature

set, in other words the mode shape and frequency response features. Visual classification based

on the standard deviation control limits of the damage detection results demonstrate that the

results obtained from the mode shape data outperforms those obtained from the frequency

response data. With exception of the LLE dimensional reduction method, which resulted in one

false-negative method, at the 2% noise level, the mode shape based dimensional reduction results

in zero false negatives For the given simulation, comparison of the results obtained in Figure 5.5

and Figure 5.6 shows that extracted feature obtained from mode shapes is a better damage

indicator in comparison to the extracted feature obtained from natural frequencies.

The advantage of mode shapes over natural frequencies can be explained as a result of the extra

feature extraction step taken in order to obtain mode shapes from frequency response data. By
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extracting mode shapes via a system identification process, prior to performing dimensional

reduction, intelligent data compression is performed based on prior knowledge of structural

properties and aids in the physically interpretation in terms of established mathematical modeling

of vibrating characteristics. Direct application of dimensional reduction techniques to minimally

transformed data, such as frequency response, attempts at extracting the most informative features

via raw computational power. The intelligent pre-selection of known informative features, such as

natural frequencies, is found to be the main advantage of using mode shape based method over

the frequency response based method. In addition, assignment of equal signal-to-noise levels for

the mode shape and frequency set data has major effect on the results. In practice, noise content

levels found in the frequency response function can be magnified when extracting the structural

mode shapes due to the additional data manipulation and transformation steps. It is recognized

that simulations cannot reproduce all of the critical steps and challenges involved in the

application of vibration-based damage detection. In practice, frequency response and

experimental modal analysis faces numerous challenges, particularly regarding signal processing

and compounding errors during system identification process.
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Figure 5.5. Principal component of natural frequency feature set for each dimensional reduction method with
2% noise.
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Figure 5.6. Principal component of mode shape feature set for each dimensional reduction method with 2%
noise.
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Table 5.3. False-negative count in damage detection.

Mode Shape
Data

Frequency Response
Data

PCA

LLE

LTSA

kPCA

DM 11

Dimensional Reduction

0 3.50

?, 0.6
< 0.5
B 0.4

KPCA

Figure 5.7. Comparison of dimensional reduction overall accuracy results under varying noise levels.
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il»
EM Combined Combined
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Figure 5.8. Comparison of classification overall accuracy results under varying noise levels.
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Figure 5.7 and Figure 5.8 provide the dimensional reduction and classification performance

comparison, respectively, in terms of overall accuracy (OA), for damage Case 2 for the mode

shapes feature set at 2, 2.5 and 3.5% noise levels. For each test case, 100-damaged and 100-

undamaged samples were used. Individual dimensionality reduction results shown in Figure 5.7

were obtained by averaging all classification results for the corresponding dimensional reduction

technique. In similar fashion, the individual classification results shown in Figure 5.8 were

obtained by averaging the dimensional reduction results.

Overall, LTSA and PCA provided the highest OA for the dimensional reduction methods, and

EM provided the highest OA for the classifiers. From the dimensionality reduction and

classification results, we conclude that PCA was not outperformed in most cases by the nonlinear

and more complex dimensional reduction techniques, LLE, LTSA, KPSA and DM. Second, class

separation was consistently applied when using PCA. In contrast, LLE and DM methods failed in

some cases for Case 2 dataset at 3.5% noise level, see [97] for non-averaged individual results.

For this reason, LLE and DM have the poorest OA values at 3.5% as shown in Figure 5.7. These

failures might be a result of the inability of the eigensolver to identify the smallest eigenvalues.

Also, nonlinear methods require the selection of proper kernel function and k-neighbors, which

might improve class separation results, but at the cost of computational costs. Third, no clear

performance superiority was observed on any of the classifiers, including the combined product-

rule classifiers as shown in Figure 5.8. Results demonstrate that classifier performance is highly

dependent on the performance of the dimensionality reduction method in maximizing between-

class variance. Fourth, in none of the test cases the combined classifiers achieved clear

improvement over the individual performances of the individual classifiers, and the product and

mean classifiers provided very similar results. From this observation, we may infer that combined

classifiers are as good as its best individual classifier.
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The deterioration study was performed on Case 4 of Table 5.2 at 1% noise. Figure 5.9(a)

shows the effect of deterioration has on the principal eigenvalue obtained from applying RPCA to

1000 sample vectors of the model frequencies with damage induced after 700 samples. Using

RPCA, the eigenspace of the model is updated to account for the time-varying characteristics

caused by the deterioration rate induced on the modulus of elasticity. The forgetting factor of the

RPCA was set at 0.9 to accommodate the slow deterioration rate. From Figure 5.9(a) and Figure

5.9(b), we can see that the impact damage event, starting with record number 700, can be

separated from the undamaged data sets. By using RPCA, the simulation uncertainties relating to

signal-to-noise ration (SNR), structural deterioration and environmental variability were

addressed. The results demonstrate that the usage of dimensional reduction and recursive methods

can be very useful in extracting and analyzing features under different uncertainties for damage

detection.
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Figure 5.9. Application of RPCA, (a) principal eigenvalue, and (b) principal component.



www.manaraa.com

139

5.6.2 Damage Quantification

Given that a damage case has been detected, the next step is to evaluate the location and

magnitude of the impact damage. Damage assessment will be based on the modal curvature

damage index method. Using the first 10 mode shapes generated from the cantilever finite

element model, the damage index vectors were obtained using the damage cases shown in Table

5.2. To highlight deterioration effects, dimensional reduction was not applied to this sample

simulation.

Comparison of Figure 5.10(a)-(b) shows that if system identification approach assumes that no

structural deterioration has occurred, then spontaneous damages location and magnitude could be

lost along the rest of the damage indicators caused by aging. This simple evaluation shows the

need for continuous monitoring and model updating of a structure, which can become beneficial

in separating deterioration effects from discrete damage events.
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Figure 5.10. Case 3 damage index (a) with deterioration, and (b) without deterioration.
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Next, the noise effects in extracting clear damage index values were analyzed. Prior to

performing the statistical Z-test criteria, we generate a number damage index vectors, NDI , using

the same damage test case. For each damage index extraction, the modal data was randomized

separately. By doing so, dimensional reduction was then applied as a noise reduction technique,

see Eq. (49), at each element value aj of the damage index method.

To demonstrate the problem of relying only on the Z-test to make damage decisions, Case 3

results at 1% noise level were obtained. Figure 5.11(a) shows a damage case where the true-

positive damage locations are located at Elements 9 and 34, but due to the noise content, false-

positives were also found at other elements. In addition, the worst damage is indicated in Element

3, which had no damage induced. This significant error can only be attributed to the random

accumulation of noise at this particular element.

I I Il

I
15 2« 25 JMi ?5 4M ?5 5»

(aiHfmi-möumbrf

I

I» 15 III Î5 Jit .*.< -1« -»S 50
iti» t lriurot miniliri

Figure 5.11. Case 3 damage index at 1 % noise results, (a) without PCA and Z-test, (b) with PCA and Z-test.
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Next, the results for damage Case 3 at 1% noise was enhanced by applying PCA training

prior to applying the Z-test statistical criteria. For this analysis, the assumption is made that

multiple damage index vectors can be extracted. More specifically, we assume that the procedure

for extracting mode shapes and generating a single damage index vector can be repeated NDI

times. By doing so, dimensional reduction can be applied as a noise reduction technique at each

element value or . of the damage index method.

Using Eq. (49) and the 3-principal directions obtained from PCA, the original damage index

data was reconstructed with reduced noise content. The damage index vector was extracted a total

of NDl = 5 times. Figure 5.1 1 (b) shows the improved results obtained by PCA training and Z-test

statistical criteria. The corresponding damage estimated at Elements 9 and 34 are well captured.

Because noise is assumed to be random and un-biased, the probability of getting multiple

indicators of damage for a particular element is rather low even for a small number of samples.

The latter results demonstrate the importance of supervised classification in damage diagnostics.

Damage assessment decisions based on training of data greatly enhances diagnostic performance

in comparison to those based on single-set of measurements.

Based on PCA training and Z-test criteria, performance evaluation measures are given in Table

4 for N=IOO samples. The performance measures of missed detection rate (MDR), false alarm

rate (FAR), and mean severity error (MSE) are defined as follows:

1 N
MDR= T(MD)1 (72)NT tí

1 NFAR= T(FA). (73)
NP tí

MSE = —Tl ' (74)NP& ßf
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where NT is the number of true damage locations, MD is the number of missed detections,

NP is the number of predicted damage locations, FA is the number of false damage locations, and

the true damage severity and predicted severity for ith location are, respectively, ß\ and ß? .

Table 5.4. SEDI estimation performance.

Noise Case U
Wn MSE 9/0 0.00 4.43 1.68 0.91 8.25

FAR 0.00 0.68 0.96 0.00 38.90
MDR 0.00 0.38 0.00 0.00 0.36

20/0 MSE % 0.08 3.02 1.86 8.39
FAR 0.02 1.44 2.58 0.52 39.10
MDR 0.00 0.62 0.06 0.00 0.68

25?? MSE o/o 0.99 5.50 3.67 3.05
FAR 0.22 1.56 4,18 1.54 38.60
MDR 0.00 0.50 0.12 0.00 0.54

350/0 MSE % 3.75 5.88 4.82 4.08 8,67
FAR 1.30 3.98 7.60 3.42 38.70
MDR 0.00 0.56 0.36 0.02 0.58

From Table 5.4, the following observations can be made. For the undamaged Case 1, the noise

levels of 2, 2.5 and 3.5% caused nonzero FAR values, which means that false damage alarms will

be generated past the 2% noise level. Case 2 and 4 had single damage locations of equal

magnitude. For Case 2, the MDR values ranged from 0.38 to 0.56. The reason for the nonzero

MDR values is because as noise levels are increased, the probability of detecting the smaller

damage is lower. The FAR values for this case range from 0.68 to 3.98 indicating that false

alarms are almost unavoidable given any level of noise. Case 4 provided better performance

values than Case 2. For Case 4, MDR and FAR values ranged, respectively, from 0 to 0.02 and 0

to 3.42. The improved performance of Case 4 over Case 2 is attributed to the location of damage.

Damage in Case 2 is located at Element 4 near the base of the cantilever, while damage in Case 4

is located at midspan, Element 25. For the cantilever beam, the magnitude of deflections due to

excitations is much higher compared to near base elements; thus, making Element 25 more
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sensitive to structural changes. The lower sensitivity of Element 4 to structural changes

caused the increased levels of MDR and FAR. For example, many of the sample runs for Case 2

estimated the damage location to be at Element 3 or 5 instead of Element 4, which would

simultaneously result in a missed detection and false alarm. The performance measures were less

accurate when it came to Cases 3 and 5, which consisted of multiple damage locations of

different magnitudes. For Case 3, the MDR and FAR values ranged, respectively, from 0 to 0.36

and 0.96 to 7.60. In terms of the MSE, Case 4 provided the lowest levels of error, which ranged

from 0.91% to 4%. Comparison of MDR values for Case 3 and Case 2 again shows that damage

estimation is location sensitive. The lower MDR values obtained for Case 3 in comparison to

Case 2 can be attributed to the damage locations, which were further away from the base

(Element 1). Finally, the estimation performance results obtained for Case 5 indicate that the

damage index method fails to isolate the damage location once multiple (> 2) damage locations

exist.

With increasing levels of noise, in other words uncertainty, and damage scenario complexity,

the performance of the damage diagnosis deteriorates. Extracting modal parameters, such as

mode shapes, and using them to discriminate between normal and abnormal structural conditions

is very susceptible to uncertainty in operational and environmental conditions. In experimental

and real world applications, very often the changes resulting from normal variations in the

structural system are greater than the changes caused by low levels of damage. During the modal

and system identification process, fundamental assumptions, such as linearity, stationarity, and

observability, are made. While in general, the system identification process does take into account

measurement uncertainty, such as random noise, increasing structural complexities, such as

nonlinearity and changing boundary conditions due to temperature variations, cannot be taken

into account and be well isolated from the structural identification process. This demonstrates the
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need for uncertainty analysis in SHM. Although significant research has been done in

developing approaches and tools for data mining and knowledge discovery there is still a large

gap between the performance of the existing methodologies and the expectation and requirements

desired for SHM. In SHM, it is desired and necessary to properly induce and reduce the acquired

knowledge, and describe it in a way that can be easily understood and classified. One major

problem in knowledge explanation is to account and describe the uncertainties in qualitative

concepts and how to implement the uncertainty transformation from quantitative data to

qualitative concepts. Therefore, there are uncertainties not only in the process of data mining, but

also in the discovered structural health state knowledge.

5.7 Summary

The results presented in this chapter have shown that damage assessment based on computational

dimensional reduction of vibration data can be used to effectively detect and estimate

spontaneous damage under different types of uncertainty. One major reason for the slow-progress

in applying SHM technologies to real-world structures is the existence of uncertainty in every

step of the damage assessment process. Adaptive pattern recognition techniques have been

applied to a cantilever model and demonstrated that damage assessment can be performed at

considerable levels of noise. Dimensionality reduction and feature classification methods were

employed to discriminate between damaged and undamaged data. A comparative study is

presented of dimensionality reduction and classification techniques.

From the results obtained, we may conclude that statistical discrimination of damage from

undamaged data is more dependent on the efficiency of the dimensionality reduction method,

than the classification method. Furthermore, a balance between physics-based and data-driven

methods must be achieved to maximize the information and confidence levels of the damage



www.manaraa.com

145

diagnosis. Increasing confidence in damage diagnosis is directly proportional to the

uncertainty level considered. The systematic consideration of uncertainties is as important as

having the appropriate structural system model, especially during model validation where the

total error between physical observation and model prediction must be characterized.



www.manaraa.com

146

Chapter 6

Proposed Sensor-Merging Technique for Output-Only Modal Analysis

In order to perform damage localization based on modal parameters, an experimental structural

model must be obtained via modal analysis. Experimental modal analysis can be performed in a

traditional way namely in a laboratory environment. In standard experimental modal analysis

(EMA) externally applied input forces are measured together with dynamic responses of the

system at different locations. Artificial external excitation is not always possible or measurable.

In operational condition, it is often impossible to apply standard EMA since in one hand applying

excitations in a controlled way might be intricate and dangerous and, on the other hand, the

presence of immeasurable external and ambient forces jeopardizes the application of system

identification techniques. When the vibration response of a structure is due to natural or ambient

conditions, output-only or operational modal analysis (OMA) is required.

In this chapter, we present a roving sensor operational modal analysis technique based on

transmissibility measurements. Measurement of dynamic properties, such as modal parameters,

are an important step in vibration-based structural health monitoring. A brief review of output-

only (operational) modal analysis is provided. A new technique is proposed based on a sensor-

merging approach when limited output-only sensors are available.

6.1 Output-Only (Operational) Modal Analysis

Modal analysis has been widely used for the task of extracting structural modal parameters from

the response of structural components and systems. In traditional EMA, the structure is often

removed or isolated from its operating environment and tested in controlled laboratory
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conditions, which may vary significantly from the operating conditions. Numerous modal

identification algorithms for single-input-single-output (SISO), single-input-multiple-output

(SIMO), and multiple-input-multiple-output (?G??) have been developed both in the time and

frequency domain. EMA is a relatively well understood technique and is well described in a

number of texts [44,71,105]. EMA requires structure excitation by means of known forces and

measuring the output responses over the structure. The structure's modal parameters are then

characterized or estimated on the basis of both the known input forces and output responses.

In many engineering applications, direct measurement of mode shapes is not always possible.

Structural mode shape extraction requires input (e.g. force) and output (e.g. acceleration)

measurement. When control of input excitations is not possible, approximating methods must be

utilized. System identification techniques, referred as operational modal analysis (OMA) have

been developed to identify modal parameters from structural systems under their operating

conditions using output-only data [105]. OMA allows for a more realistic modal models for in-

operation structures, such as bridges and aircraft. In addition, very often it is not possible to

provide sufficient artificial forced excitation to complex structures, such as bridges and high-

speed ships. Also, the cost associated with performing modal testing can be too high to be

justified. Thus, difficulties involved in providing sufficient excitation and simulating the realistic

operating conditions proves to be a major support for OMA in place of EMA, which require the

structure to be excited by a known artificial force.

Table 6.1 provides an overview an comparison of OMA and EMA modal analysis methods.

The main advantage of OMA over EMA is that during modal testing, the structure remains in its

real operation conditions, which can vary significantly from results obtained during a forced-

excitation laboratory experiment. Moreover, performing modal testing while in operation includes

the effects of unknown and/or uncontrollable ambient sources, such as temperature. The
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contribution of these ambient sources can have a significant effect on the dynamic response of

structures. A drawback to using OMA is that the Obtained operational deflection shapes (ODS)

are approximations on the true mode shapes of the structure, and can be heavily dependent on the

force or loads being applied. Theoretical mode shapes do not depend on either the amplitude or

location of the applied loads, they are natural properties that do not change unless the properties

of the structure change, hence their use in damage detection problems. Furthermore, if the

excitation level is quite low, then the OMA will provide poor results.

Table 6.1. Overview and summary of EMA and OMA approaches.

All Limited Consistent Scaled
Input(s) Time FrequencyOutputs Outputs Persistent Mode

Available Domain Domain
Available Available Excitation Shapes

Experimental Modal
Analysis (EMA)*
Operational Modal
Analysis (OMA)**

X X

X

X X

X

X

X

X

X

X

*Existing methods require artificial known excitation, but provides scaled mode shapes and can be used with
roving sensor approach.
**Existing methods do not require known excitation, but do not provide scaled mode shapes and cannot be used
with roving sensor approach.

6.2 Output-Only Identification Algorithms

The simplest method to estimate modal parameters from operation data in the frequency domain

is the so-called Peak Picking (PP) technique applied to the auto and cross-spectrum of the

response signal [44]. The PP method is based on a single-degree-of-freedom (SDOF) approach,

which involves selecting peaks in the spectra corresponding to resonance frequencies. This

method yields reliable estimates when the structure exhibits low damping and structural modes
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are well separated. An advanced version of the PP method is known as the Complex Mode

Indicator Function (CMIF) [71] or Frequency Domain Decomposition (FDD), which is based on

singular value decomposition (SVD) of the matrix of power spectra. The common steps in the

peak picking family methods are:

• Individual peak regions are visually chosen and marked from the cross-spectra between

responses and a reference signal. In the vicinity of each peak, the maximum is found and

associated to the eigenfrequency of the mode.

» Two points are identified on the cross-spectra curves, one below the eigenfrequency ? and

one above, both having an amplitude C(¿y)/V2, where C(a>) is the amplitude at the

eigenfrequency. These two points are called half-power points.

• The damping ratio ? of the associated mode is then computed by

S? s?
f = (Q2 - CO1 (75)

Frequency ??) ?? ?*?2

Figure 6.1. Half-power bandwidth method.

Aside from SDOF techniques, more advanced model-based algorithms, for the identification of

output-only data, are available in the frequency and time domains. The time domain methods

include the Least Squares Complex Exponential (LSCE) estimator [71], and a wide range of

Stochastic Subspace Identification (SSI) techniques [25,34,39,114,137]. The Maximum
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Likelihood Estimation (MLE) technique is a frequency domain method [25,31]· Describing

these methods is beyond the scope of the present manuscript. A detailed overview of output-only

system identification methods can be found in [25,71].

If all N-responses of a structure under test are measured simultaneously, each of the structural

responses can be used in output-modal analysis to extract operating deflection shapes. This

approach results in a NxN power spectrum matrix G(?) . In our work, simultaneous

measurements of all points of interest was not possible due to insufficient sensory and data

acquisition equipment. For some structural engineering applications, not all outputs are measured

at once. Therefore, direct application of output-only modal analysis based on cross-power

spectrum matrix, which is the basis for frequency domain OMA, could not be performed.

Usually, a limited number of sensors is available for measuring a large number of experimental

DOFs of the structure. The standard allocation of sensors for ambient vibration testing uses a

group of roving sensors and a group of fixed reference response sensors that simultaneously

measure the structural response. Since ambient excitation has a non-stationary nature, the

reference responses are required for creating a composite measurement from the roving

measurements. When non-stationary signal are encountered, the scaling of the ODS from test to

test can vary significantly. In addition, performing vibration measurements on a structure via

roving sensor groups increases the possibility of mass loading non-stationary effects due to

imprecise mass properties variations induced by the roving sensors. Since this type of non-

stationarity depends on the variability experimental setting, attention must be paid to maintaining

mass variability to a minimum.

In order to extract scaled modal parameters from multiple locations, we made use of a re-

scaling of the auto- and cross-spectra approach to compensate for variation in excitation and
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modal participation. Throughout the work presented in this thesis, use was made of this re-

scaling approach for output-only modal analysis, which will be presented next.

6.3 Sensor Merging Output-Only Modal Analysis Re-Scaling Technique

The idea to re-scale and merge data from different groups of roving accelerometers before

performing mode shape extraction is based on the work of Mevel et al. [114]. Consider a linear

time invariant structural system with a total of N^ experimental DOFs, Ngr measurement

groups containing Nwv measurements, and for all measuring groups, Nref fixed reference

measurement points are simultaneously measured. For each group of roving output

measurements, the time response is transformed to the frequency domain by estimating the auto

and cross power spectra among the response signals and their reference responses. The auto and

cross spectra for group i and frequencies ?, are contained in matrix G1 (?) with size

((N + Nref)xNref) , which can be organized into sub-matrices as follows

G,» = GfM'
Gf (?)

(76)

with Gf being a (Nref ? Nref ) sub-matrix that contains the auto and cross power spectrum

estimates of the reference responses, and Gf a (N r ? Nref ) sub-matrix containing the auto and

cross spectra of the non-reference with the reference responses.

The Gf matrix, containing the cross-spectra of group j , can be re-scaled for all frequencies to

a common level dictated by the matrix Gf , containing the cross-spectra of the reference

responses from group k , as follows
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(77)

where T is the transmissibility matrix of group,/ with respect to reference measurements j .

Note that peak resonant locations of transmissibility functions in general do not correspond to

system poles. The transmissibilities are multiplied by the same power spectrum matrix of

reference group k to bring the pole locations back into the re-scaled data. The complete data set

of re-scaled cross-spectra is given by

G'0' (?) =
Gsi->k {?)
GfM

(78)

Given the complete set of re-scaled cross-spectra matrix, re-scaled operational deflection

shapes can be obtained via well known OMA methods, see next section. The re-scaled mode

shape vectors are organized in the (Ndof X-N1n)

f = (79)

Figure 6.2 shows a schematic of the re-scaling approach using the PSD matrix. In this research,

the frequency domain decomposition technique is utilized to extract operational deflection

shapes.
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re-scaling estimation

Figure 6.2. Schematic of re-scaling technique.

6.4 Frequency Domain Decomposition

The following section will deal with the modal decomposition of output-only data in the

frequency domain. It will be shown that modal parameters can be identified from cross power

spectra of output-only data. The frequency domain decomposition (FDD) (Brincker et al. [17]) is

an extension of the well known peak picking technique. The approach uses the fact that modes

can be estimated from the spectral densities calculated with the assumption of white noise input

and a lightly damped structure.

6.4.1 Modal Decomposition of Cross Power Spectra

Prior to applying the frequency domain decomposition approach for obtaining mode shapes,

the estimates of the auto and cross power spectra are to be obtained from finite sequences of

measured time samples. For this work, the classical periodogram method [13] was utilized.

The FDD technique is based on the formula of input and output power spectrum relationship

for a stochastic process defined as

G„ (?) = H(^)Gx, (?) UT (?) (80)

where GÄ and G^ are the (n^xti^,) input and (n0UIxn0UI) output power spectral density

(PSD) matrices, respectively, top '- ' indicates complex conjugate, H is the (nin xnout) frequency
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response function (FRF) matrix, which can be expressed as a partial fraction form via poles

K and residues Rk

HO)=E-5V+-^V (81)
with N1n being the number of modes, Rk =f,t? , where 0k and yk are the mode shape vector

and modal participation vector, respectively.

Using Eq. (80) and the Heaviside partial fraction theorem for polynomial expansions, we

obtain the output PSD matrix as

???) = ?-^?—+—^+—^— + 5* - (82)tí jto-K Jo-K -J(O-K -J(O-K

where Ak is the k'h residue matrix of the output PSD. The matrix G is assumed to be a

constant value C , since the excitation signals are assumed to be uncorrected zero mean white

noise in all measured DOFs. Matrix A4 is Hermitian and is given by

A,=R,C£ ' _ + '—= (83)S=1~K~K -K~K

The contribution to the residue from the kth mode is given by

A4=^A (84)
Considering a lightly damped model, we have the following relationship

lim At=RtCRj:=¿tfCrt#=dt¿# (85)
damping pugili

where dk is a scalar constant. The contribution of the modes at a particular frequency is limited

to a finite number. The response spectral density matrix can then be written as follows
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(86)G /jœ\= y ??F? , dA<t>¡
where Sub(co) is the set of modes that contribute at the particular frequency.

The spectral density matrix is then decomposed by using singular value decomposition (SVD),

which is performed to identify the SDOF models of the structure. The decomposed spectral

density matrix after applying SVD is given by

Gw(â>) = OZ<Dfl (87)
where the matrix F is a unitary matrix holding the singular vectors f?., S is a diagonal matrix

holding the scalar singular values s¡ :

l. = diag(s1,...,sf)m)--
S1 O
O s2

O O

O

O
(88)

SVD is performed for each of the matrices at each frequency and for each measurement. The

singular vectors correspond to an estimation of the mode shapes. Each of the SDOF systems

obtained by the SVD allows us to identify the natural frequency and unsealed mode shape at a

particular peak. Peak-picking technique can then be performed on each resonant peak on the

average of the normalized singular values for all data sets.
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Figure 6.3. Singular values of the PSD matrix of the response.

Figure 6.3 shows the result of the SVD of a spectral density matrix. The example presented

here is the response of a rectangular steel plate coupled with engine oscillations. The test is

described in detail in M0ller et al. [1 16]. The red vertical lines indicate structural mode frequency

locations. The singular vectors are ranked in singular value descending order. Compared to

regular peak picking method, this techniques allows us to identify possible coupled modes that

are usually hard to identify via regular PSD functions.

6.5 Case Study: Application to Plate Experiment

This section illustrates the evidential reasoning damage assessment approach using an in-house

designed experiment. An aluminum plate structure was hanged using fishing strings to simulate

free-free boundary conditions (Figure 6.4). Dimensions of the plate are 45.72cm ? 45.72cm ?

0.3175cm. Impact excitation was applied on the structure to provide impulse response excitation.

Sampling was done at 1024Hz. The signals are lowpass filtered for the frequency band of interest,

(OHzAOOHz] . We utilized 35-locations, as shown in Figure 6.4, where response signals were
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taken. Due to the limited number of acquisition channels (four), two sets of measurements

have been done for each test described hereafter.

Each accelerometer with hardware has a mass of 33-grams. In order to avoid varying mass

loading effects while roaming the accelerometers on the plate, additional masses 33-grams each

were placed at all measuring points where no accelerometer was used. Accelerometer one has

been kept at the same location in each measurement set and is used as a referenced signal. The

reference accelerometer is located at one of the corners of the plate, it is assumed that this

location is free of damage. Since consistency in impact testing is hard to maintain, correlation

functions in the tests presented here have been computed with reference to the response of the

first accelerometer. The modal identification will work on the principle of the sensor merging

technique for output-only modal analysis (OMA).

ft

Figure 6.4. A free-free aluminum plate structure.

6.5.1 Modal Analysis - Undamaged Structure

Eigenfrequencies and damping values were identified with the OMA analysis version of the

frequency domain decomposition (FDD) described in section 6.4. Figure 6.5 shows all the

autospectrum responses of the output accelerometers. The first peaks around the 8Hz correspond
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to rigid body modes. A total of 13 resonant peaks are captured in the 400Hz range. Figure 6.6

shows the isolated autospectrum of a corner accelerometer with mode indicators corresponding to

peaks. Strong mode coupling exists between close modes in three frequency regions - at 1 15Hz,

202Hz, and 353Hz. Due to difficulty in extracting stable mode shapes from closed-coupled

modes, these peak regions were not utilized in the damage assessment analysis. In Table 6.2 we

report the natural frequencies and associated damping values.

The first 5 identified mode shapes of the undamaged structure are shown in Figure 6.7. Modes

4 (113 Hz), 6 (199 Hz) and 7 (201 Hz) were not well identified due to mode coupling and

closeness to other resonant frequencies, and noisy character of the re-scaled cross-power spectra

data. As such, these closely spaced modes will not be utilized in the damage assessment analysis

based on mode shapes. Poorly identified modes would only increase the noise content of the data

analyzed using the mode shape-based damage indicators. The poor quality mode shapes

(4,6,7,11,12) and the additional identified modes (9,10,13) are shown in Appendix A. After the

re-scaling procedure, the extracted mode shape estimates are of relative good quality, which will

be beneficial in performing correlation analysis with modes extracted from damaged structure.

Using the method of frequency domain decomposition (FDD), mode coupling and closely

spaced poles make modal parameter extraction difficult, especially in output-only modal analysis.

More advanced techniques based on fitting models, such as least square complex exponential

method (LSCE) and stochastic subspace identification (SSI), along with mode stability diagrams,

can aid in extracting mode shapes from closely spaced modes. Application of these techniques is

beyond the current research effort. For additional information on these modal parameter

estimation methods refer to [25,71,105].
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Figure 6.5. Autospectrum response for impact excitation of all output responses.
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Figure 6.6. Autospectrum response for impact excitation of a corner measurement point.
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Table 6.2. Frequencies and associated damping values for undamaged test case.

Mode

1

2

3

4

5

6

7

8

9

10

11

12

13

/(Hz)
45.17

67.37

78.86

113.60

116.87

200.80

204.13

212.53

234.36

252.51

351.29

356.63

389.49

O) (Hz)
0.02

0.07

0.03
0.06

0.05
0.07
0.05
0.01
0.95
0.01
0.09
0.03
0.07

3af (Hz)
0.07

0.20

0.08

0.18

0.14

0.22

0.14

0.03

2.86

0.02

0.26

0.08

0.22

<T(%)
1.11

0.74

0.63

0.44

0.43

0.37

0.37

0.24

0.22

0.20

0.14

0.28

0.19

0 0 Mode 1,45.5 Hz
0 0 Mode 2, 67 Hz

0 0 Mode 3, 79 Hz
0 0

Mode 5, 116.5Hz

0 0 Mode 8, 213 Hz

Figure 6.7. Mode shapes identified in the presence of impact excitation.
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6.5.2 Modal Analysis - Damaged Structure

Now dummy masses will be added to structure to simulate damage. Three dummy masses, 12-

grams, 27-grams, 54-grams, aie chosen for structural modifications. By varying the additional

mass, the uncertainty and sensitivity in the damage assessment method can be analyzed. Figure

6.8 and Table 6.3 show the locations where the dummy masses were placed and the test cases

being analyzed. Table 6.4 gives an overview and comparison of the 13 natural frequencies / ,

together with the 99.8% confidence intervals 3>af , and the corresponding changes in natural

frequencies ?/ from the undamaged to the damaged condition using the 54-grams mass. The

presence of the attached mass can be detected since the changes in the natural frequencies Af are

clearly statistically significant. This conclusion is on a basis of the uncertainty on the

experimentally measured shifts 3af .

In Figure 6.9, we report the first five identified mode shapes for experiments with a 54-grams

dummy mass placed damage location Dl . To maintain consistent mode shape orientation, all

generated modes at each particular resonance were flipped-over (if required) about the plate's

plane of symmetry to match the orientation obtained in the reference undamaged modes. Visual

comparison of Figure 6.7 and Figure 6.9 demonstrate no clear indication, such as localized spikes,

of dummy-mass location. As previously stated, due to difficulty in extracting stable mode shapes

from closed-coupled modes, these peak regions were not utilized in the mode extraction process

and damage assessment analysis.
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Figure 6.8. (a) Induced damage locations on a 18" X 18" plate; (b) Sensor locations (nodes 1 through 35), and
finite element shells (1 through 24).

Table 6.3. Damage assessment test cases.

Mass Location Mass (g)Test Case

Undamaged

Ll. L2 27, 27
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Mode 1,45.5 Hz
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Figure 6.9. Mode shapes identified in the presence of impact excitation for damage case D3.

Table 6.4. Overview and comparison of the experimental results obtained on plate structure for case D3.

Mode

1

2

3

4

5

6

7

8

9

10

11

12

13

Undamaged

/ (Hz)
45.17

67.37

78.86

113.60

116.87

200.80

204.13
212.53

234.36

252.51

351.29

356.63

389.49

Undamaged

3af (Hz)
0.07

0.20

0.08

0.18

0.14

0.22

0.14

0.03

0.28

0.02

0.26

0.08

0.22

Case D3

Af (Hz)
-0.31

0.00

-0.22

-0.20

-0.25

-0.01

-0.05

-0.12

-0.02

-0.08

-0.01

-0.01

-0.05

CaseD3

3s?/(??)
0.08

0.31

0.11

0.29

0.14

0.31

0.25

0.09

0.38

0.08

0.36

0.14

0.31

CaseD3

?? (%)
-0.01

0.01

0.00

-0.01

0.00

-0.13

-0.12

0.12

0.00

0.10

0.07

0.00
-0.06
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Table 6.5 shows an overview of the natural frequencies shifts due to the additional mass for

the identifiable modes only, together with the undamaged frequencies 99.8% confidence

intervals. The changes incurred by case Dl were not statistically significant since the change in

natural frequencies were smaller than the 99.8% confidence intervals. The reason for this is that

case Dl used the smallest dummy mass of 12g. Using statistical significance as the damage

detection indicator would result in a false-negative for case Dl. In all the other damage cases, the

presence of the attached mass can clearly be detected since the changes in the natural frequencies

?/ are clearly statistically significant. As expected, case D3 and D6 had the biggest shifts in

frequency due to their maximum mass addition of 54g.

Table 6.5. Overview of frequency changes due to additional mass for identifiable modes.

Mode
Undamaged

/(Hz)
Undamaged

3af (Hz)
Case Dl

?/ (Hz)
CaseDl

?/ (Hz)

CaseD3

?/ (Hz)

CaseD4

Af (Hz)

CaseD5

?/ (Hz)

CaseD6

Af (Hz)
1

2

3

8

9

10

13

45.17

67.37

78.86

212.53

234.36

252.51

389.49

0.07

0.20

0.08
0.03
0.28
0.02
0.22

-0.05

0.00

-0.04

-0.02

0.00

-0.01

-0.01

-0.14
0.00

-o.io
-0.06

-0.01

-0.04
-0.02

-0.31

0.00

-0.22

-0.12

-0.02

-0.08

-0.05

0.00

-0.05

-0.02

-0.07

0.00

-0.01

-0.74

0.00

-0.13

-0.05

-0.20

-0.01

-0.02

-2,13

-0.14

-0.13

-0.15

-0.26

-0.01

-0.05

-2.15

The output-only modal analysis base using roving accelerometers assume that the re-scaling

approach based on the reference accelerometer yield consistent information on the same system

with similar excitation. A violation of this assumption creates significant data inconsistency,

which will lead to identification problems. If significant excitation inconsistencies, say impact

versus random excitation, are made in between roving accelerometer measurements will show up

in the mode shape estimation process.
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6.6 Summary

The extension of experimental modal analysis (EMA) to operational modal analysis (OMA) has

opened new innovative perspectives and possibilities that involve in-use dynamic characterization

of engineering structures, such as aircraft and bridges, in their operating conditions. Aside from

not requiring additional force excitation hardware, the main advantage of OMA is that structures

is tested and modeled under realistic or actual working conditions. Moreover, freely available

natural excitation sources can be used as an alternative to controlled artificial excitation.

In this chapter, we presented a proposed OMA method for estimating structural mode shapes

by using a transmissibility -based sensor-merging technique. The proposed procedure for

obtaining mode shape estimates can become lengthy and tiresome if a large number of patches

are required. Using standard EMA techniques, problems can arise when extracting close-coupled

or repeated modes. Now, this difficulty is more evident in the proposed approach due to

additional estimation errors that can occur due to the multiple vibration tests required to perform

sensor merging.

The proposed approach is quite useful when the number of required sensor outputs is much

greater than the available measurement channels. The method was tested with an in-house

aluminum plate experiment. Measurements were performed under 4xFree (FFFF) boundary

conditions. The experimental results show that the proposed approach was able to extract well

separated mode shapes.
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Chapter 7

Improved Vibration-Based Damage Localization Technique

This chapter discusses the principles of damage localization based on vibration-based analysis.

Baseline damage indicator approaches based on modal parameters are presented. To enhance the

damage localization performance of these damage indicators, we propose a technique based on

the localized structural sensitivity to mass or stiffness changes integrated with statistical

sampling. The proposed approach is compared to results obtained using the baseline damage

localization methods by means of in-house experiments conducted on a free-free plate structure

and experimental data from the 1-40 bridge damage assessment benchmark [48].

7.1 Baseline Damage Localization Methods

In this section, multiple vibration-based damage indicator functions are discussed, which are

widely accepted as baseline techniques for performing damage detection and localization.

Vibration-based methods are based on the fact that damage alters the dynamic properties of

structures, such as natural frequencies, damping, mode shapes, and operational deflections shapes

(ODS). Measurement and tracking of such modal properties can provide information regarding

structural health condition.

The most widely used mode shape quality indicator is the single-number measure known as

Modal Assurance Criterion (MAC) [4]. The MAC value indicates the degree of correlation

between the undamaged, f , and damaged, f* , mode shapes and defined as
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(90)

where N^ equals the degrees of freedom or measurement points defining the mode shape.

The MAC value ranges from 0 to 1, with 0 representing null correlation and 1 representing

perfect correlation. Abnormal deviation from unity is interpreted as possible structural damage.

The MAC value only provides damage detection capability. To obtain damage localization and

combine multiple mode shapes, the Coordinate Modal Assurance Criterion (COMAC) [91] is

utilized and is defined as

COMAC: =
ttâ

J N„ Nm

S^S€
1=1 1=1

(91)

where j represents the modal coordinate and N1n is the total number of modes. Similar to

MAC values, COMAC value of O indicates low correlation and a value of 1 indicates high

correlation.

An alternative to using direct mode shape changes to obtain information about damage is the

use of mode shape derivatives, such as curvature, which is the second derivative of the mode

shape with respect to position. The use of mode shape curvature (MSC) for damage detection was

introduced by Pandey et al. [129]. The curvature is calculated from the measured mode shapes

using a central difference approximation

^ 0J+Ui -2f„ +f?4
j ¿-1 ?21=1 "j'+l.J

(92)
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where i is the mode shape number, j is the node or measurement point, and d is the

distance between measurement points. The damage index using the curvature method is given as

MSCj= ?f] =\?]\-\f]"\ (93)
where subscript '*' indicates damage condition. In this work, we normalize the curvature

damage index so that values of 0 indicate zero correlation and value of 1 indicates perfect

correlation, i.e. no difference in change of curvature.

Damage detection and localization of continuous structures based on the strain energy damage

index (SEDI) method developed by Stubbs et al. [165] utilizes the modal strain energy

distribution in a structure due to damage. In this work, the SEDI method is applied to the analysis

of operational deflection shapes (ODS) based on the work of Cornwell et al. [27] which extended

the SEDI method to 2D structures. This method requires that ODS before and after damage are

known, and only a few modes are required; thus applying a reduced-order model approach.

For a particular mode shape, f? (?, y) , of an undamaged structure, the energy associated with a

mode shape is given as

' o J J

where (x, y) are the particular coordinates of the 2D structure, D is the bending stiffness, and

? is the Poisson's ratio. Because ODS cannot be used to measure the true modal parameters of

the structure, material and geometric properties variables are not utilized. The material-reference

free pseudo-energy is now given by

* a

O O

dx2
+ 3M + 2V

, dx2 By2 + 2(l-v) dxdy
dxdy (94)

+ IA \2
+ dAVd^Ajd^

dx2 dy2
+

dxdy
dxdy (95)
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If the 2D structure is subdivided into Nx and Ny elements in the ? and y directions,

respectively, then the energy associated with sub-region jk for the i'h ODS is given by

btn "i*i

1WJ
}\ ak

dx2
f*2*\2

+

V Vy
?^2, \

+
dx

i^2,\^. a2*
??? ; dy

+ 'aV2
V^ J dxdy pxdy

and the fractional energy at location jk is defined to be

(96)

(97)

f. J^Jijk jj

"v JV,

2_<2~jJiß
k=\ J=I

(98)

(99)

Similarly, expressions can be written using the ODS of the damage structure, f* , where *

indicates the damaged condition. The ratio of the parameters can be determined to indicate the

relative ODS changes in the structure as follows

ß = ^- D11
(100)

fm D*

Eq. (100) becomes singular if the denominator goes to zero, which will occur when

simultaneously the element size approaches zero and the element location coincides with a nodal

point of a ODS. To overcome this limitation of dividing by zero, an approximation is made such

that the axis of reference for the ODS sensitivities is shifted by a value of 1. Adding unity to both

the numerator and denominator of Eq. (100) yields

ßm = (101)
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In order to account for all measured modes, the following formulation for the damage index

for sub-region jk is used

S(4+1)
_ /=1Pjk N, (102)

Etó+1)
Ml

where damage is indicated at the jkth location if ßß > 1 . Once damage is localized, its severity
can be estimated as follows

1
a = 1= —J* ß ?

£!(/¿+i)
';'* ZU* +1)

-1, ajk>-l (103)

/=1

where damage severity is indicated as the reduction in the jk'h member if ajk < 0 . Kim and

Stubbs [84] used this to indicate damage severity in terms of reduced stiffness.

A particular difficulty that exists with using mode shapes in damage assessment problems is

that noise content can make mode shape extraction difficult and might create significant errors

thereby generating false-positives or false-negatives. Correlation measures based on the

frequency response function between damaged and undamaged structures can be useful since the

error due to modal parameter extraction is eliminated, in particular when the modes are closely

spaced or high damping exists in the structure.

Two frequency response functions (FRF) representing the same input-output relationship can

be compared using the Frequency Response Assurance Criterion (FRAC) [71], which is defined

as

FRACj = {H*(^{H(^.)};
[? (q)}¿It &)}; [(H(Ui)^(H(U,)).

(104)
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where {H(ó¿¡)}. is the FRF of the undamaged structure, superscript '*' indicates the

damaged structure and j is the damage location or coordinate. This correlation measure returns a

value between 0 and 1 for zero or perfect correlation.

In output-only modal analysis, the input force is not available for measurement; therefore, the

FRF cannot be applied. For our work, we have modified the FRAC measure and replace the FRF

with the transmissibility function, which is the frequency response between a motion response

and a motion input, and are measured without the knowledge of the excitation forces. The

modified FRAC function is called the Transmissibility Frequency Response Assurance Criterion

(TFRAC) and defined as

TFRAC: = {?(?)}]{t(?)? (105)

{r(^)}y{r(^)}JL{T(^)};.{T(^.)}7
where (T(Oi;)] is the transmissibility function between the j'h measurement point and the

pre-defined fixed reference measurement point.

For consistency in comparing all methods, we re-adjust all damage indicator outputs, such that

a value of 1 indicates no correlation (damage) and a value of -1 indicates perfect correlation (no

damage).

The aforementioned techniques were chosen because of their similar input requirements

(natural frequencies, mode shapes) and their ability to identify damage without the use of a finite

element model (FEM) of the structure.

7.2 Proposed Sensitivity-Based Damage Localization with Statistical Sampling

In this section, a method based on localized sensitivity of structure to changes in mass and

stiffness is discussed in terms of its applicability to damage assessment. Theoretical background
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for the formulation of the sensitivity approach is first given. Incorporation of sensitivity to

localized changes in mass and stiffness is required to minimize stochastic errors introduced in the

estimation of the modal parameters. Since the presence of measurement and modal estimation

noise is unavoidable, confidence intervals are necessary to show the statistical significance of the

changes caused by damage. For this reason, a statistical sampling technique, known as Monte

Carlo, is employed to improve performance and to extract statistical measures of the results from

the proposed damage localization technique.

7.2.1 Modal Parameter Sensitivity

The modal parameter sensitivity data is based on the undamaged state of the structure. For

damage identification based on modal analysis, it is required to know how a change in the

structural parameters, such as mass and stiffness, will affect the modal parameters. An important

tool for the prediction of modal parameters changes is the knowledge of the derivatives of the

modal parameters to the structural parameters. Many methods have been reported for the

calculation of eigenvalues and eigenvector derivatives. An approach for real symmetric

eigensystems was first presented by Fox and Kapoor [53]. Rogers [143] further extended the

eigensystem derivative calculation to more general system matrices. With these methods the

calculation of eigenvalue derivatives only requires the eigenvalue itself and the left and right

eigenvectors. In contrast, the eigenvector derivative requires knowledge of all eigenvectors of the

system. Without the requirement of full knowledge of the system matrices, Heylen et al. [71]
derived for a linear mechanical system with general viscous damping the sensitivity modal

parameters to changes in mass and stiffness can be calculated by means of the estimated poles

and normalized mode shapes. In contrast to model updating methods, this approach does not

require a continuously updated finite element model of the structure since the modal parameter
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sensitivities are obtained from experimental measurements. The theoretical formulation and

derivation hereafter is based on the derivative formulation by Heylen.

Consider the eigenvalue problem in Laplace form

(íA + B)Y = 0

A =
0 M

M C
B =

-M 0

0 K
,Y =

iX

X

(106)

(107)

where s is the Laplacian variable, M is the mass matrix, C is damping matrix, K is the

stiffness matrix and X is the response vector. Eq. (106) yields N eigenvalues \ (k = 1,..., N) and

eigenvectors <E>t . The eigenvectors are orthogonal when weighted by the A and B matrices as

follows

FG?F = a, FG?F = b,b = -a\ (108)

a = diag{al,...,aN,a'1...,a'N}, b = diag{b¡,...,bN,b¡...,b"N] (109)
where A is a diagonal matrix assembled by the eigenvalues and their complex conjugates

denoted by '*', and the diagonal matrices a and b define the normalization of the eigenvectors.

Pre-multiplying the eigenvalue problem for mode k with F\ gives

F[(??+?)F,=0

Taking the derivative of Eq. (110) with respect to model parameter ? gives

(110)

3FG ,-3(4A + B)
de* (?? + ?)F,+FG?";:' /f* +f1 (AA + B)-^f = 0

Eq. (Ill) reduces to

F

dô

(d\ A . 3A 9?\_ ?——? + ?, — + — F, =0[de de dû* k

3F*
dû (111)

(112)
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The sensitivity of an eigenvalue to a change of parameter ? is given by Heylen as

^"M^^r (113)
Since the eigenvectors define a base for the 2Nx2N vectorspace (2x due to complex

conjugate), the partial derivative for an eigenvector can be written as follows

where /?fc. is a coefficient that enables the calculation of the mode shape sensitivities. Taking

the derivative of Eq. (1 10), pre-multiplying by F[ and combining with Eq. (114) yields

f[(?? +?)^ + F[3(\?/%, =0 (115)
Applying the orthogonality relationship defined in Eqn. (108), the pu coefficients can be

obtained. In [71], the expressions for the coefficients pk¡ are derived as

Pu
1 :*íÍ4^+^k ,for***ß,(?-?) ? 3? 3ö

----- F[ —F, ,îoxk = iIa1 k da k

(116)

·**

Combining Eqs. (114) and (116) yields the eigenvector derivative as

*- F? F*+> —; ??t-+?"f?f? (117)

In terms of mode shape vectors f?? , mass, damping and stiffness matrices, the modal

sensitivities are given by
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/=?,,?*?,· (? -A)

(119)

The modal scaling factor a, of mode k depends on the chosen normalization scheme [71]. For

the general viscous damped system, Eqs. (118)-(119) are only exact if all modes with

corresponding complex conjugates of the structure are available and taken into account.

Therefore, a truncation error was introduced by Heylen in the calculated sensitivities of the

identified mode shape estimates due to the lack of the remaining modes. However, the

expressions for the sensitivity of the modal parameters is a good approximation even if only a

limited number of modes are experimentally available, which in general is the case.

For an undamped system, a unit modal normalization scheme can be used for the normalization

of the mode shapes. In this case, the modal scaling factor is then given by

U1 = 2icok

Provided that the modal model can be written as

(120)

HN = S Rt R N.r

Kico-icok ico+ia>k;
=S F? F?H ?

( ico - icok )ak (ico+ id),,) dk

The elements of the mass normalized mode shapes can be obtained from

(121)

R
Pjk = ak

V-Oi-'

\lak^lo,olr

where R¿. is the residue matrix for mode k .

For an undamped system, Eqs. (118)-(119) become

(122)

^ = -F?de 2n
r dM 1 3??

(123)
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d(/>k ?^T?. . Ä 1 ^f 2dM 9KV . .,..,-^ = — f? F„F„ + > -, tf\-?; + — ?f,f, (124)

In structural health monitoring applications, structural defects are typically assumed as local

reductions in stiffness. For the sensitivity analysis, changes in local stiffness and local mass will

be taken into account. The sensitivity analysis due to mass changes will serve useful in

experimental cases were damage was simulated by means of local mass modifications.

For simple modifications, such as a local mass change, a change of linear spring stiffness

between two DOFs, the actual mass or stiffness must not be known. In the case of an undamped

system, and for the case of a local mass change in DOF r , the sensitivities of the k"' natural

frequency, and k'h mode shape at DOF j are given respectively as

?—^F? (125)omT 2

For the case of a local stiffness change in DOF r , the sensitivities of the k'h natural frequency,

and k"' mode shape between DOFs ? and q are given respectively as

OKn ¡=i,mk «? - O)1

where Nm is the total number of modes of the system. In practice, only a limited number of

modes are identified, but generally, the sensitivities can still be approximated using Eqs. (125)-

(128).
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7.2.2 Sensitivity-Based Modal Correlation

To improve damage localization results based on experimental modal parameters, we propose the

following modal parameter sensitivity approach. Recognizing that each sensor location has a

different sensitivity to structural changes at a specific location. We applied the derived sensitivity

operators based on derivatives of known modal parameters to a modified mode shape correlation

method. The proposed approach takes into account the fact that not all sensor locations will

provide equal level of information when damage is localized to a particular area.

For a system with ND0F measurement outputs, the k'h frequency-based and mode shape-based

sensitivity matrices due to mass changes are given respectively as follows

2«°)

¡(«

da>k d(ûk
"aéT""'"^

do*
'3ft,

d0k d<pk d0k

(129)

(130)
3$ 30r ???

where ?t ={mT,kpq} indicates the localized modification at DOF r or between DOFs ? and q,

Sf is an NmxNDOF sensitivity matrix, and Sf is an lxND0F sensitivity matrix.

By applying Eqs. (129)-(130) to all available or considered modes Nm, the overall sensitivity

matrices for the eigenfrequencies and mode shapes are defined as follows

S(e>=[sr\ S<"\ ...,S£>] (131)

S<" = [Sf, Sf ,-.,S^] (132)
where Sw is an Nmx(Nm*ND0F) sensitivity matrix, and Sw is an NmxND0F sensitivity

matrix.
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The objective in determining the sensitivity matrices is to improve the damage localization

performance of the baseline damage localization methods. For this work, a sensitivity-analysis

damage index (SDI) is developed using the mode shape sensitivity matrix and is defined as

follows

SDI .= -^i (133)

A comparison of the input requirements for the proposed SDI and baseline damage localization

techniques is given in Table 7.1.

Table 7.1. Input requirements for the damage identification methods. Input criteria - natural frequencies ' CO' ,

operational mode shapes '</>' , operational mode shape curvature 'f"', and frequency response 'H(Cu)' .
input criteria

? f f" ?(?)
COMAC X X

MSC XXX

SEDI XXX

TFRAC X

MAC X X

SDI X X X

The latter mode shape- and frequency-based damage localization methods are based on the

assumption that mode shapes and frequency response are correctly measured with minimal

normal variability. In practice, measurement errors are bound to exist. System identification

based on modal parameters is a powerful technique for building accurate parametric models of

complex system under noisy data. In operational modal analysis, also known as ambient vibration

testing, one of the main challenges is assessing the quality of the processed vibration test results

when there is no previous reference for a dynamic properties of a structure. Reliability or
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confidence in the extracted modal parameters from operational modal analysis may be

questionable because of various uncertainties that impact different stages of the testing and

analysis process. Numerous investigations have taken extracted modal properties and applied

them to damage assessment problems. Vibration-based damage assessment, particularly in

operational modal analysis, can be linked to high-levels of uncertainty in its implementation and

interpretation.

Many researchers have discounted the value of conducting investigations into the behavior of

the actual structural systems and its uncertainties. As a consequence, published research has

claimed success for a multitude of isolated structural systems or components without facing a

critical important and fundamental question of "how can the results obtained from a specific

structure be generalized to provide information applicable to other structures?" As a consequence,

the possibility of direct application of results from many experimental tests to real-world

structural systems is rather limited.

7.2.3 Statistical Sampling

Discrimination of damage data, in terms of detection and localization, from healthy data is a

question of evaluating the modal parameters distributions and/or boundaries. In order to obtain

modal parameters distribution, the variance on the power spectrum estimates of the response

signals must be evaluated. To improve damage localization results based on experimental modal

parameters, we introduce the following statistical sampling approach. The particular statistical

sampling approach is based on the work by Farrar et al. [49] which was applied to Alamosa

Canyon Bridge damage assessment problem.

Using the assumption that the primary errors in the modal extraction process are random and

uncorrelated with excitation and structural responses, and that the excitation input is from a single
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source, the confidence interval s„(·) on the estimate mean of the auto and cross powerßy

spectra Gij magnitude is (according to Bendat and Piersol, 1980, [13])

,,(|g,,m|)=J^L\?????a

k-Hfi?)= ? I "V1 (135)7,? ' G, (Co)G, (?)
where Nd is the number of the estimated auto- and cross-power spectra, f;j is the estimated

coherence function.

For the problem at hand, it is important to note that biases in the signal are not taken into

account. Bias errors generally arise from nonlinear and/or time-varying system parameters,

propagation in time delays, correlated noise, among others. The statistical estimates of the

spectral parameters are assumed to be free of biases. The work herein derives the statistical error

analysis formulas for measurements of spectral density functions and associated modal parameter

estimates. The derived statistical error estimates derived by Bendat et al. [13] and utilized by

Farrar et al. [49] can be and have been used in multiple applications, which include the simulation

of random environments for structural dynamics testing at multiple locations and directions, the

determination of natural frequencies and modes of vibration of offshore platforms and bridges

from accelerometer measurements of multiple recordings of ambient response data only [48]. As

stated by Bendat, the key element that makes advanced applications, such as damage assessment,

is the ability to distinguish statistical estimation errors (false-positives or false-negatives in

damage diagnosis) from actual system changes, such as damage.

Typically, a Gaussian distribution is assumed, so that a percentage confidence level can be

associated with the confidence interval s (·). It should be noted that Eq. (134) are estimates of
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the confidence intervals and not estimates of the standard deviation. The relationship between

the estimate of the population standard deviation, er(·) , and the confidence interval on the mean

estimate, sµ (·) , is given as

Now, the estimates of the standard deviation of the auto- and cross-power spectra are

\???)\

Alternatively, the most direct approach of deriving noise information on output-only data is to

divide each response data sequence of N1 samples into P non-overlapping segments of D

samples each, such that PxD < N1. Estimates of the average auto- and cross spectra estimates can

be obtained from

where G0 is the average of P independent observations given that little or no overlap exists

among all segments. Given that excitation is considered stationary, an estimate of the standard

deviation of the cross power spectra is given by

"IIP* H) = ¡yr^TH-G^l (139)
One drawback of using Eq. (139) to measure the standard deviation is overestimation of

variance due to non-stationary excitation. Additionally, if only a limited number of time response

samples are available, averaging reduces the spectral resolution and increases the possibility of

introducing leakage errors into the estimates.
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Given that the statistics of the spectral function errors are estimated, the next step is to

propagate these errors through the modal parameter identification procedure. For this analysis, a

statistical sampling technique will be applied to estimate the statistical measures of modal

parameters. Two common methods to achieve this is by using Monte Carlo or bootstrap

simulations. These two sampling techniques are discussed next.

The Monte Carlo method, which is a procedure where data is repeatedly simulated using an

assumed statistical distribution of error on the data. The modal identification procedure is then

applied to each of the simulated data sets, producing a set of identified modal parameters. After

numerous simulations, the distribution of the modal parameters is assumed to be representative of

the true distribution of the modal parameters. Figure 7.1 shows the overall process for applying

the Monte Carlo method to estimate modal parameters statistics. The main drawback of Monte

Carlo method is that it assumes the type of distribution of the variability of the test data.

An alternative to the Monte Carlo method is the bootstrap method, which randomly selects

individual cross power spectra G,.. measurements from the P non-overlapping segments to form

the ensemble average. For each cross power spectra Gv , the samples are selected at random and

with replacement.

The bootstrap method is advantageous because it does not require an assumption of the form of

the statistical distribution of the data. Once the randomly ensemble averages are formed, the

operational modal analysis procedure is applied, which is repeated numerous times to form a

histogram of the identified modal parameters. Using this histogram, statistics for the distribution

of the modal parameters can be estimated.
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Draw sample fiom Gaussian form with statistics
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Figure 7.1. Monte Carlo procedure for estimating statistical measures of modal parameters.

Numerous other sampling techniques, such as Markov Chain Monte Carlo (MCMC), Gibbs

sampling, and particle filter [75], have been proposed and used in the study of damage assessment

with uncertainty. In this work, the Monte Carlo method will be utilized to quantify confidence

levels of modal parameters and damage indicators. We chose to work with Monte Carlo

simulation because of its simplicity and assumed Gaussian distribution, which can be easily

described via well known statistical measures such as mean and variance.

It
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Figure 7.2. Monte Carlo method for estimating statistical measures of modal parameters, {?,f} (both

undamaged and damaged states), and damage localization indicator, DI^ , at each coordinate (i, j) .

It is unavoidable that modal parameter estimation is always obtained with uncertainties. In

practice the error in measured natural frequencies is negligible in comparison to the measurement

error in the mode shapes. Taking into consideration that most of the damage localization

techniques utilize some sort of mode shape correlation, it is important to quantify the uncertainty
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associated with the damage localization metric obtained. Ideally, multiple measurements

would be necessary to quantify the statistical measures of the obtained damage localization

metric.

The extraction of operational mode shapes requires averaged auto and cross power spectral

responses, and to extract multiple sets of operational mode shapes would be too exhaustive, and

not always practical. The propagation of the mode shape and natural frequencies uncertainty

levels to damage localization estimates will be studied via the previously described Monte Carlo

method. Figure 7.2 shows the steps to implement the Monte Carlo procedure for estimating the

statistical measures of the modal parameters and damage localization indicator.

7.3 Case Study I: Damage Localization for Plate Experiment

For a more quantitative comparison among the test cases, the damage localization indicators

discussed in sections 7.1 and 7.2 were calculated and used for damage localization. The methods

evaluated for damage localization are the coordinate modal assurance criterion (COMAC), strain

energy damage index (SEDI), mode shape curvature (MSC), transmissibility frequency response

assurance criterion (TFRAC), and the proposed sensitivity-analysis damage index (SDI) method.

These techniques were chosen because of their similar input requirement, in other words

frequencies and mode shapes, and their ability to identify damage without the use of a

computational model of the structure. The damage localization techniques were applied to the 6

different plate damage scenarios previously described.
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Figure 7.3. Diagonal MAC values between the mode shapes of the undamaged and damaged conditions for the
plate experiment. MAC values for each damage condition 1-6 are shown in (a)-(f), respectively.

The differences between the undamaged and damaged conditions of the mode shapes are

shown via the MAC values in Figure 7.3. Values close to 1 show high correlation, and values that

deviate from 1 show lower correlation. According to the diagonal MAC values, the largest

changes in mode shapes are not consistent throughout all damage conditions. Therefore, choosing

modes that clearly and consistently indicate deviation from undamaged conditions cannot be

made. Visual comparison of the MAC values of damage case 1 and case 6, Figure 7.3 (a) and (f)

respectively, the MAC value for case 6 are overall a bit lower, which is due to the increasing

mass modifications.
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7.3.1 Damage Localization Results

The damage localization results are presented graphically. In the damage localization graphs,

each node represents the location of an accelerometer. The damage indices for each DOF were

plotted using finite element mesh, where a red color represents low correlation, and blue indicates

high correlation. The true location of damage in these finite element models is indicated by a red
circle.

For the first damage analysis series, the COMAC method was utilized for damage localization

of the free-free boundary aluminum plate. With all 7 mode shapes taken into account, the

COMAC method is not able to give a good approximation of the true location of the mass

modification, see Figure 7.4. For the first three damage cases, where the mass modification is

made on the top-left corner, the COMAC does provide approximate damage indications near the

true damage location. For the first damage case, false-positive damage locations are given at the

lower left-corner and at the right midsection of the plate. For the second and third damage cases,

a substantial false-positive damage area is indicated in the lower-left midsection of the plate. For

the damage cases 4-6, the damage is not localized at all, and substantial false-positive areas are

given.

Next, the MSC damage localization method results are provided in Figure 7.5. This method

used the curvature of the mode shapes as its basis for modal parameter correlation. Visual

analysis shows that the results obtained using this particular method provided very imprecise

indication of the true damage location. Multiple false-positives are seen through out the plate in

all cases. For the third damage case, the lowest DOF correlation is indicated near the true damage

location, which is a positive result. For cases 4 and 5, the lowest correlation is indicated just right

of the true damage location. For case 6 where two mass modifications were utilized, the lowest

level of DOF correlation are indicated near the true damage locations, but not very clearly.
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For the SEDI damage identification method, its results shown in Figure 7.6 demonstrate

also a poor performance in terms of correctly isolating the true damage location(s). For cases 1-3,

the SEDI method provides approximate location of the damage at Ll near the top left-corner, but

false-positives remain throughout the rest of the DOFs. For cases 4-6, the SEDI method

completely fails to recognize any potential damage near the true damage location at the left

midsection of the plate. For case 6 with the double mass modification.

The results of the TFRAC method are shown in Figure 7.7. In comparison to the MSC and,

SEDI results, the TFRAC provides 'cleaner' results with more localized damage indicators, which

is very similar to the COMAC method results. For the smallest mass modification of case 1, the

TFRAC method does not indicate any damage near the true damage location, and gives a major

false-positive at the lower end of the plate. For cases 2 and 3, damage was localized at the top left

corner of the plate. A symmetric damage location was also identified at the bottom left corner.

Both cases also show a false-positive at the right top corner.

In contrast to the other baseline methods, for cases 4 and 5, the TFRAC provides a good

location approximation for the mass modification at the left midsection. False-positive indications

of lower strength (severity) are given at other locations, however overall the results are positive in

comparison to the other methods. Case 6 also provides a good approximation of damage in the

top-left comer. The midsection L2 mass modification is not well approximated. One observation

is that most of the damage indication is localized to the left portion of the plate, which contains

both mass modifications. The indication shown on the right midsection is again at the symmetric

location of the true damage location.
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Figure 7.5. Normalized MSC values on the basis of 7 mode shapes of the undamaged and damaged conditions.
MSC values for each damage condition 1-6 are shown in (a)-(f), respectively. True damage location indicated by

red circle.
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Figure 7.6. Normalized SEDI values on the basis of 7 mode shapes of the undamaged and damaged conditions.
SEDI values for each damage condition 1-6 are shown in (a)-(f), respectively.
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Figure 7.7. Normalized TFRAC values on the basis of 7 mode shapes of the undamaged and damaged

conditions. TFRAC values for each damage condition 1-6 are shown in (a)-(f), respectively. True damage
location indicated by red circle.
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The TFRAC method, based on direct use of DOF transmissibility, seems to produce; better

results in comparison to the other baseline methods, which are based on mode shapes or mode

shape curvature. The improved TFRAC results are primarily due to the increased noise content

which exists in the approximated mode shapes, and also the derived mode shape curvatures.

Because the TFRAC method used the direct transmissibility measurements to correlate the plate

sensor measurements by each DOF, the noise content is limited to the signal processing process.

Because the mode shapes extraction require additional data transformation steps, important

information is lost and the relative noise content is increased due to the mode identification

process. This increase in overall noise content explains the spread on damage indication observed

in the MSC and SEDI results, Figure 7.5 and Figure 7.6 respectively. These two methods require

additional steps to extract mode shape curvature, which further amplifies noise levels.

Hence, we come across a significant problem since the same feature extraction processes used

to obtain damage indication and isolation, are magnifying the noise that exists in the analyzed

data. Damage identification methods, such as the MSC and SEDI methods, make the assumption

that modal parameter changes in all structures can be obtained via a general direct and almost

blind application of mode shape derivatives and their numerical integration, which becomes a

significant problem when noise is at the same or greater level of the damage being sought and

identified. Therefore, these results demonstrate the increased need for domain specific knowledge

about the structure under analysis.

One advantage of the proposed SDI damage assessment process is the capability of obtaining

estimates on the confidence intervals of the identified mode shapes. As previously stated, the

Monte Carlo sampling technique was utilized to obtain statistical measures. For this particular

Monte Carlo study, convergence of the estimated statistical measures was obtained after

approximately 70 runs.



www.manaraa.com

194

Table 7.2 shows the 3s statistical variance measures obtained for each mode shape at each

measurement output. The 99.7% confidence bound CB3a values for the i'h DOF and f mode

shape are defined as

3s(4)CBìa = /.7x100% (140)

The mode shape change due to damage is defined as

\ód -f"\
F»

where the superscripts u and d refer to modes from the undamaged and damaged conditions,

respectively.

Comparing the undamaged case and damaged case 3, Table 7.3 shows the absolute mean-to-

mean change for each mode shape at each measurement output. Comparing the statistical

variance error per mode shape in Table 7.2 and the average change in mode shape in Table 7.3

shows that the 3s confidence intervals often exceed the changes resulting from damage. Only

modes 1 and 3 show a bigger average error under the damage condition when compared to the

undamaged 3s average error. Although some of the mode shapes undergo significant (> 4%)

average change, none of the degrees of freedom undergo a consistent change greater than the 3s

over all modes.

Although the obtained statistical measures are only estimates, the results demonstrate the

difficulty in obtaining damage indicators that exceed noise error. Basing our damage detection

and localization analysis using just statistical measures would not be sufficient, and it would

render significant false-diagnosis. In this particular case, based on the statistical measures, the

diagnosis would be of a false-negative since the confidence intervals exceed the changes caused
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by the mass modification. Therefore, with limited measurement data, the estimated statistical

measures cannot be directly used to detect and localize damage. Using the mean mode shape

parameter values extracted using the Monte Carlo method, we performed damage assessment

based on the proposed SDI method.

The damage localization results of the proposed sensitivity-based SDI method are shown in

Figure 7.8. Overall, the damage localization results obtained using the proposed method contain

higher accuracy and reduced false-positives. For the smallest mass modification of case 1, the

damage location was well approximated with the only drawback that a smaller severity area

spread over the top half of the plate is also indicated. In contrast to the baseline methods, the

proposed method provided improved results, especially for case 3 where the damage was well

localized and false-positives were almost non-existent. For cases 4-5, the lowest correlation

indications were given well in the vicinity of the true damage locations. For case 6, both damage

locations were identified, but it did contain false-positives at the symmetric locations of the true

damage locations.
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Table 7.2. Undamaged case confidence bound at 3(7 for identified mode shape parameters.

Measurement

Output
Model Mode 2 Mode 3 Mode 8 Mode 9 Mode 10

2.39%

1.72%

0.70%

2.26%

2.84%

2.08%

1.43%

0.97%

1.77%

2.20%

1.78%

0.79%

0.92%

0.69%

1.65%

1.03%

0.92%

1.05%

1.15%

0.71%

1.39%

1.08%

0.91%

1.74%

2.16%

2.32%

1.54%

0.98%

1.39%

2.67%

2.69%

1.62%

0.81%

2.17%

2.92%

1.58%

0.80%

2.99%

3.54%

2.17%

0.70%

1.99%

1.90%

2.18%

2.10%

1.43%

2.69%

0.75%

1.27%

1.10%

2.69%

3.61%

1.37%

1.34%

1.37%

3.33%

2.15%

1.21%

1.21%

1.00%

2.40%

2.17%

2.06%

2.88%

1.86%

1.41%

0.69%
2.69%

3.64%

2.55%

1.21%

1.95%

12.41%

1.28%

1.95%

7.11%

4.94%

11.24%

3.26%

7.18%

1.57%

6.68%

2.04%

4.57%

4.20%

2.88%

9.05%

9.21%

10.64%

5.48%

3.52%

4.50%

2.48%

8.16%

11.09%

9.96%

9.15%

4.44%

2.36%

9.39%

3.95%

10.82%

6.18%
5.41%

6.40%

3.51%

4.56%

6.04%

3.92%

4.29%

7.11%

5.32%

5.35%

2.65%

1.78%

2.04%

2.36%

2.27%

3.68%

5.91%

7.00%

2.26%

3.68%

7.03%

5.14%

6.73%

4.24%

7.60%

5.62%

4.09%

3.95%

2.31%

5.26%

1.90%

2.36%

2.36%

3.88%

1.77%

5.55%

2.31%

6.93%

4.09%

7.60%

4.30%

3.36%

13.73%

3.36%

13.46%

3.73%

10.54%

7.26%

4.00%

7.19%

10.31%

14.05%

3.95%

3.88%

3.74%

14.25%

3.56%

3.94%

3.68%

3.91%

3.96%

13.44%

4.05%

3.41%

3.48%

13.45%

10.13%

7.04%

3.39%

7.11%

10.64%

4.21%

13.43%

3.96%

14.32%

3.58%

7.19%

3.16%

4.60%

1.96%

4.80%

3.24%

3.65%

6.49%

2.27%

6.61%

3.80%

5.05%
4.38%

2.13%

4.72%

4.96%

1.87%

1.86%

2.31%

2.24%

1.54%

4.94%

4.39%
1.84%

6.27%

4.82%

3.64%

6.68%

2.24%

6.05%

3.25%

3.00%
5.25%

2.16%

4.37%

3.56%

3.83%
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Table 7.3. Absolute mean-to-mean changes for identified mode shape parameters. Comparison of
undamaged and damaged case 3 values.

Measurement

Output
Model Mode 2 Mode 3 Mode 8 Mode 9 Mode 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Average

2.01%

1.10%

2.05%

2.74%

4.01%

3.12%

3.50%

0.53%

1.14%

1.81%

1.42%

2.50%

1.78%

0.96%

1.27%

0.97%

0.62%

0.95%

0.65%

0.79%

1.08%

3.45%

0.62%

1.33%

1.58%

1.85%

1.33%

0.67%

1.38%

2.05%

2.14%

1.22%

0.81%

1.25%

3.40%

1.66%

0.56%

1.49%

1.96%

1.44%

1.75%

0.96%

0.98%

1.65%

1.18%

1.10%

1.66%

0.94%

0.89%

0.55%

1.38%

1.81%

0.53%

0.92%

0.54%

1.88%

1.48%

2.78%

0.85%

0.93%

1.65%

0.81%

1.36%

1.55%

1.41%

1.46%

0.79%

1.24%

1.80%

1.84%

0.73%

1.28%

3.41%

6.56%

4.61%

8.43%

7.08%

4.45%

7.90%

5.56%

7.48%

5.50%

7.34%

5.60%

5.85%

6.48%

5.91%

7.70%

9.02%

7.50%

4.23%

6.91%

7.66%

3.86%

7.10%

4.80%

5.60%

6.16%
7.78%

5.76%

5.83%

3.54%

7.80%

6.41%

2.95%

4.50%

11.23%

6.24%

1.49%

1.99%

3.39%

2.92%

2.73%

1.38%

0.98%

1.27%

0.85%

0.97%

2.29%

2.12%

2.72%

1.64%

1.79%

3.32%

2.23%

3.08%

2.00%

3.37%

3.09%

1.81%

2.26%

1.24%

2.08%

0.75%

1.29%

0.90%

1.44%

1.50%

2.55%

1.49%

3.66%

1.46%

3.11%

2.03%

3.09%

0.12%

2.99%

3.41%

2.95%

6.09%

4.71%

2.83%

4.54%

6.13%

8.90%

2.45%

2.14%

2.27%

8.34%

3.00%

2.54%

3.02%

2.72%

2.53%

8.59%

2.11%

2.63%

2.88%

6.41%

7.11%

4.75%

2.23%

4.85%

6.88%

2.84%

0.71%

2.65%

8.46%

2.45%

4.01%

1.37%

1.24%

0.81%

2.10%

1.37%

1.14%

2.25%

0.78%

1.63%

0.88%

1.43%

1.98%

1.13%

2.10%

1.49%

1.50%

0.71%

0.41%

1.05%

0.81%

1.66%

1.52%

1.21%

1.49%

1.30%

0.81%

2.09%

0.75%

2.45%

0.94%

1.11%

1.93%

0.37%

1.25%

1.13%

1.32%
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Figure 7.8. Normalized SDI values on the basis of 7 mode shapes of the undamaged and damaged conditions.
SDI values for each damage condition 1-6 are shown in (a)-(f), respectively. True damage location indicated by

red circle.



www.manaraa.com

199

7.3.2 Discussion - Plate Damage Localization

After analyzing the damage localization results obtained using the baseline techniques, the

following observations can be made:

(1) For some cases, especially those where the mass modification was on the top left corner,

a maximum damage index was detected near the correct damage location, but all of the

results showed distributed random patterns of false-positive damage indices. The

presence of systematic or stochastic errors could account for this effect.

(2) Comparison of all the results shows the inefficacy in providing accurate damage

localization results based on direct correlation of resonant frequencies and mode shapes.

The exact damage location(s) could not be derived from the damage identification

results.

(3) The more intricate techniques based on mode shape curvature, i.e. MSC and SEDI,

instead of finding a single damage location, a distributed pattern of damage indices is

obtained due to the additional manipulation of noisy modal parameters.

(4) Since the damage identification methods are based on identifying and interpreting

changes in natural frequencies and mode shapes, damage localization problems can be

partially attributed to the highly symmetrical experimental structure used. For example,

in the COMAC results for cases 4-6, symmetric false-positive damage patterns are found.

Although the baseline damage localization techniques have been shown in other vibration

applications to be effective, for this particular application, their damage identification

performance was rather poor. It is opinion of the author that due to the presence of stochastic

errors on the estimated modal parameters obtained using the proposed output-only modal analysis
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approach, the baseline damage localization results were dismal. Thus, under higher levels of

uncertainty, existing damage localization techniques are not reliable.

For the proposed SDI method, significant improvement in damage identification accuracy and

consistency was made in all damage cases. By incorporating the domain-specific knowledge,

such as sensitivity of modal parameters to structural changes, the performance was significantly

improved in terms of damage localization accuracy and consistency. By recognizing that each

sensor location has a different sensitivity to localized structural changes, the proposed SDI

approach provided improved damage localization results. The presence of systematic or

stochastic errors were taken into account by applying the Monte Carlo statistical sampling

method, which minimized the false-positive damage locations. By obtaining multiple random

samples from the same vibration dataset, converging estimates of the statistical measures of the

modal parameters and damage localization indices were obtained. Although the average mode

shape changes caused by the mass modifications were not consistently greater than the estimated

3s standard deviation bounds, the estimated mean mode shape values used in the proposed

modal-sensitivity damage assessment method were useful in providing improved damage

localization results. For this experiment, it is important to note that the estimated statistical

measures came from a single vibration dataset using the Monte Carlo technique. Therefore, the

estimated confidence intervals of the extracted mode shapes are difficult to evaluate due to the

limited experimental data. In order to obtain better estimates of the true statistical measures, many

repeated experiments are needed, which can be rather expensive and not always possible.

A particular false-positive phenomena occurred for this particular structure. For both the

baseline and the proposed damage assessment methods, symmetric false-positive damage

indications were found in most of the test cases. The high symmetry nature of the free-free
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boundary plate is the cause in the inability of the examined method to distinguish between

true damage locations and symmetrically positioned healthy areas.

7.4 Case Study II: Damage Localization for 1-40 Bridge

The full scale 1-40 bridge tested by Farrar et al. [48] was adopted for a further validation of the

proposed sensitivity-analysis damage index (SDI) method. The 1-40 bridge vibration data has

been extensively used as a benchmark to test damage detection methods. Briefly, in 1993, the I-

40 bridge was programmed for demolition, and investigators from New Mexico State University

and Los Alamos National Laboratory (LANL) carried out vibration tests introducing four

incremental levels of damage by gradually cutting the web and the flange of the middle span of

one plate girder.

Farrar and Jauregui [50] used the 1-40 bridge data to check the performance of vibration-based

damage localization approaches. More recently data recorded on the 1-40 bridge has been used to

study the performance of a non-modal damage localization index based on the so-called power

mode shapes based on the statistical properties of the recorded signals [47]. Some valuable

conclusions drawn from past studies on the 1-40 bridge vibration data are: (1) standard modal

properties, such as natural frequencies and mode shapes, are poor indicators of damage; (2) more

sophisticated methods based on mode shape curvature, optimization or wavelet analysis showed

improved capabilities to detect and locate damage; (3) mode shapes and derivatives usually have

large statistical variability compared to natural frequencies; and (4) the smallest levels of damage

of the 1-40 bridge data were hard not well localized and even showed problems with damage

detection.
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7.4.1 Structure and Test Description

Forced vibration tests were carried out and the accelerations of 26 points, 13 on the middle height

of the web of each plate girder, were measured. The bridge was excited by a hydraulic shaker.

Using the output acceleration responses and the input force measurement, frequency response

functions sampled at 0.03125 Hz and averaged in the frequency range 0-12.5Hz over 30 samples.

east
abutment

Nl
Sldamage

location

N7
shakeiN9

location

N13 /777 /m
S13

/777 /777

/777 /777

Figure 7.9. The 1-40 bridge sensors network and induced damage location.

Farrar et al. [50] reported that for the first two levels of damage, the variation of temperature

induced an increase of the fundamental frequency of the bridge that masked the reduction of

stiffness induced by damage. Unlike what is expected when stiffness is reduced, the fundamental

frequency value increased for the first two levels of damage. The third damage level gave nearly

the same frequency values as those for the intact bridge. Only the last and most severe damage

level, when half of the girder was cut out, gave obvious changes in the frequencies and could be

used for damage identification. Therefore, the vibration data of the 1-40 bridge can be used to

check the performance of a damage assessment method with respect to varying environmental

conditions. Six modes were identified from the 1-40 bridge vibration data using experimental
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modal analysis (EMA). Three flexural modes and three torsional modes were experimentally

identified.

7.4.2 Changes in Modal Parameters

The experimental frequencies of the 6 identified modes during the undamaged state and

progressive damage tests are given in Table 7.4. Because of the magnitude of the bridge natural

frequency is proportional to its stiffness, as incremental damage is introduced to the bridge, one

would expect the natural frequencies to drop off. The frequencies of the progressive damage

vibration tests of the 1-40 bridge show an increment in all 6 frequencies for the first two damage

levels, which contradicts expected results. The last two levels of damage due have a decrease in

frequency value. Farrar et al. [50] concluded that the ambient temperature of the bridge played a

major role in the variation of the bridge's dynamic characteristics. The different damage vibration

tests were carried over different parts of the day and thus were exposed to different ambient

temperatures. Temperature variation can affect the asphalt elastic modulus, and can alter the

boundary conditions of the structure as it expands and contracts due to its composite thermal

expansion coefficient. The uncontrollable ambient conditions and induced damage affected the

dynamic characteristics of the bridge to exhibit nonlinear frequency change as incremental levels

of damage were incorporated.

The corresponding experimental mode shapes for the undamaged case are plotted in Figure

7.10. Since the damage was induced at the midsection of the bridge, modes 1, 2, 4 and 6 (in

incremental order) would have a higher sensitivity to this damage since they show anti-nodes at

this particular location. At the final level of damage, the resonant frequencies for the first two

modes have dropped to values, 7.2% and 2.7% less, respectively, than those measured during the

undamaged tests. As shown in Figure 7.10, modes 3 and 5 have a node at the midsection of the
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bridge, and thus would have the least amount of sensitivity to structural changes at this

particular location. At the final level of damage, modes 3 and 5 resonant frequencies' dropped by

0.2% and 0.5%, respectively, which correspond to the two smallest levels of change in resonant

frequencies.

Table 7.4. Frequencies for 1-40 bridge for all scenarios of the progressive damage tests.

Damage
Case

Mode 1 - Hz

/(4/%)
Mode 2 - Hz

/(?/%)
Mode 3 - Hz

/(?/%)
Mode 4 - Hz

/(?/%)
Mode 5 - Hz

/(?/%)
Mode 6 - Hz

/(?/%)
None 2.48 (0.0)
Dami 2.52 (+1.6)
Dam2 2.52 (+1.6)
Dam3 2.46 (-0.8)
Dam4 2.30 (-7.2)

2.96 (0.00)
3.00 (+1.3)
2.99(+1.O)
2.95 (-0.3)
2.84 (-2.7)

3.50 (0.00)
3.57 (+2.0)
3.52 (+0.5)
3.48 (-0.5)
3.49 (-0.2)

4.08 (0.00)
4.12(+0.1)
4.09 (+0.2)
4.04(-0.1)
3.99 (-2.2)

4.17 (0.00)
4.21 (+0.1)
4.19 (+0.5)
4.14 (-0.7)
4.15 (-0.5)

4.63 (0.00)
4.69 (+1.3)
4.66 (+0.6)
4.58 (-1.1)
4.52 (-2.4)

Mode 1

Mode 3

Mode 5

Mode 2

Mode 4 v-

Mode6

Figure 7.10. First six mode shapes identified from experimental modal analysis (EMA) of the undamaged 1-40
bridge.
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7.4.3 Statistical Analysis

The estimated statistical measures of the mode shapes obtained via Monte Carlo method are

shown for modes 1, 3 and 6 in Figure 7.11 through Figure 7.16. Each figure shows a comparison

of the undamaged and damaged mode shapes along with its corresponding 3s confidence

intervals. For this particular Monte Carlo study, convergence of the estimated statistical measures

was obtained after approximately 100 runs. For location reference, the total number of

measurement nodes is 26 with 13 on each side of the bridge. The true damage location is node 7,

and its symmetric node is node 20. The obtained estimated statistical results are very similar to

those reported in the literature which also used the benchmark 1-40 bridge data.

Comparison of Figure 7.11 and Figure 7.12 shows the main difficulty in obtaining a clear

damage indication and localization with the smallest damage case 1 . For damage case 1 shown in

Figure 7.11, the change in mode shape caused by the introduced damage is relatively small and

does not cause a statistical significant change. The confidence intervals for both the undamaged

and damaged case have significant overlap, which makes the damage identification rather

difficult. In contrast, the first mode shape of damage case 4 shown in Figure 7.12 has a significant

shift from the undamaged mode shape. The largest changes in mode shape parameter mean and

variance are obtained at nodes 7 and 20, which correlates well with the true damage location. At

both of these nodes, the confidence intervals are well separated. Thus, for damage case 4, there is

a statistically significant change at these two components.

In a similar fashion, the third mode shape is plotted in Figure 7.13 and Figure 7.14 for damage

cases 1 and 4, respectively. In contrast to the results of the first mode shape, the third mode shape

results does not show any significant change due to damage at any damage level. Even after the

fourth and most severe damage state is applied, there is very little change in the mode shape
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components. Thus, mode shape 3 is very insensitive to the induced damage, which is a logical

response since mode shape 3 has a modal node at the damage location as shown in Figure 7.10.

Another observation is that the magnitude of the confidence intervals increases for mode shape 3

in comparison to mode shape 1. Figure 7.15 and Figure 7.16 show the sixth mode shape results

for damage case 1 and damage case 4, respectively. Although a modal node is not existent at the

true damage location for mode 6, the changes in mode shape due to the induced damage levels are

not statistically significant.

The estimated statistical measures obtained would seem to support the notion that only the

fourth and most severe damage case is the only one that demonstrates statistically significant

changes in its modal parameters. Statistical analysis on raw modal parameters is currently the

standard method for monitoring structures. For the 1-40 bridge analysis, damage assessment based

on the statistical measures would result on a false-negative for the first three damage cases in

terms of damage detection and localization. Therefore, the improved measure of the statistical

significance of the changes must be made with respect to the damage indicators previously

described, and not with respect to the raw modal properties.
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Figure 7.11. First mode shape for undamaged case (-) and damaged case 1 (--).
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Figure 7.12. First mode shape for undamaged case (-) and damaged case 4 (--).
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Figure 7.13. Third mode shape for undamaged case (-) and damaged case 1 (--).
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Figure 7.14. Third mode shape for undamaged case (-) and damaged case 4 (--)·
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Figure 7.15. Sixth mode shape for undamaged case (-) and damaged case 1 (--).
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Figure 7.16. Sixth mode shape for undamaged case (-) and damaged case 4 (--).
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7.4.4 Damage Localization Results

Modal assurance criterion (MAC) were also calculated for the 1-40 bridge vibration to quantify

the correlation between the undamaged and damaged mode shapes. As a guiding principle,

multiple researchers use a value greater than 0.9 for correlated modes, and uncorrelated modes

will yield a value less than 0.05. Figure 7.17 shows the diagonal MAC values that are calculated

when mode shapes from the undamaged test and damaged tests are compared. The MAC values

show no change in the mode shapes for the first three stages of damage. At the final damage

level, significant drops in MAC values are observed, especially modes 1 and 2. Again, when the

modes have a node near the damage location (modes 3 and 5), no significant reductions in MAC

values are observed at any of the damage levels. It is worth noting that aside from damage, other

factors cause less than perfect unity MAC values. MAC values of less than the expected value of

unity (for highly correlated mode shapes) can be caused by nonlinearities, noise on the measured

data, and incomplete or inappropriate choice of DOPs [44]. Because the damage vibration tests

are carried in varying environmental conditions with limited number of sensors, the MAC

criterion in then not very successful in detecting damage (structural modification or decrease in

modal correlation).
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Figure 7.17. Diagonal MAC values between the mode shapes of the undamaged and damaged conditions for the
plate experiment. MAC values for each damage condition 1-4 are shown in (a)-(d), respectively.

In this section, research will focus on the localization of the damage caused by the artificial

cuts induced on the 1-40 bridge. The damage localization methods that were applied to the 1-40

bridge data are the coordinate modal assurance criterion (COMAC), frequency modal assurance

criterion (FRAC), strain energy damage index (SEDI), and the proposed sensitivity-based damage

index (SDI) with statistical sampling.

The FRAC, COMAC, and SEDI methods were chosen because each one belongs to a particular

family of damage localization that is based on the correlation of frequency responses, mode

shapes, and mode shape curvature, respectively. In the analysis, all damage localization results

were normalized such that a value of -1 indicates well correlated DOF and a value of 1 indicates

poor correlation for each DOF. All 6 experimental modes were used in the damage localization

analysis. For graphical representation of the damage localization results, the damage indices for

each DOF were plotted using bars finite elements. The true location of damage in these finite

element models is at the right side of the midsection, with coordinates (2540,400).
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For the first damage analysis series, the COMAC method was utilized for damage

localization of the 1-40 bridge vibration data. Figure 7.18 shows the results obtained using the

COMAC method for all four damage levels. The damage levels 1 through 3, were not properly

identified by the COMAC method. For the smallest damage level, the COMAC provides a false-

location of damage at (4300,0). A partial damage indication is given at the midsection (2340,0)

for the three lowest levels, but it's on the opposite side of the correct damage location. Only the

largest damage level was approximately localized, again the highest level of damage is indicated

on the opposite side of the true damage location. Taking into consideration that we have prior

knowledge of true damage location, the COMAC damage localization results lack consistency

and thus reliability.

For the next damage localization analysis, the SEDI method was utilized and its results are

shown in Figure 7.19. For the smallest damage level, the highest indicator of damage is found at

two locations, (3907, 400) and (2540,400). The true damage location shows the highest level of

damage indication, but a secondary area shows the same level of indication. For the second level

of damage, the highest indicator of damage is given at (3028,400), which is close to the true

damage location. For the two lowest damage levels, damage indication or low correlation is seen

through out the bridge or DOFs.

Because we have prior knowledge of the true damage location, we could falsely deduce that

since the highest level of damage indication was found at the true damage location, then the

damage localization method does work to a certain extent. Without prior knowledge of true

damage location, damage localization results as those shown for the lowest damage levels can

only be identified as random and unreliable damage indication. Significantly improved results

were obtained for the third damage level, which clearly indicates damage at the midsection of the

bridge. Again, some false-positive indication remains at other DOFs, but significantly reduced in
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comparison to the two damage levels. The results obtained for the largest damage level are

very accurate. The highest damage indicator is given at the true damage location without any

false-damage indicators at any other DOF. The damage localization obtained for the largest level

of damage is what is desired due to its minimal false-negative and false-positives.

Visual comparison of the damage localization results obtained from COMAC and SEDI

methods shows a major difference in terms of false-positive localization. Although the COMAC

failed to correctly localize the damage for the first three levels, the false-positive location

indicators were minimal, mainly two or three bridge areas had indication of damage. In other

words, good modal correlation was obtained in most DOFs. In contrast, the damage localization

results using SEDI method shows poor modal correlation in most of the bridge areas or DOFs,

with exception of the largest damage case. The SEDI method is based on the second derivative of

the mode shapes. Given that noise corrupts the quality of experimental mode shapes, the noise

content is propagated to the extracted damage localization indices based on mode shapes. The

data manipulation to obtain the second derivatives of the mode shapes is intended to highlight the

changes in mode shape curvature and thus locate the damage, but at the same time, this additional

process also further propagates and magnifies the noise content. Thus, the lower correlation found

at all DOFs in the SEDI method is mainly due to the additional manipulation performed on noisy

mode shapes.
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Figure 7.18. Normalized COMAC values on the basis of 6 mode shapes of the undamaged and damaged
conditions. COMAC values for each damage condition 1-4 are shown in (a)-(d), respectively.
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Figure 7.19. Normalized SEDI values on the basis of 6 mode shapes of the undamaged and damaged conditions.
SEDI values for each damage condition 1-4 are shown in (a)-(d), respectively.
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Figure 7.20. Normalized FRAC values on the basis of 6 mode shapes of the undamaged and damaged conditions.
FRAC values for each damage condition 1-4 are shown in (a)-(d), respectively.
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Figure 7.21. Normalized SDI values on the basis of 6 mode shapes of the undamaged and damaged conditions.
SDI values for each damage condition 1-4 are shown in (a)-(d), respectively.
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For the next damage localization analysis, the FRAC method was utilized. For this

particular method, all four damage levels were incorrectly localized. Similar to the COMAC

method, the damage indication was localized to a few discrete bridge areas. For the smallest

damage case, the only damage indication (low DOF correlation) was given at the (5080,400)

coordinate corresponding to the east abutment location. The second damage level was falsely

located at the coordinate (1560,400). The third damage level located damage at two possible

coordinates. The first location was again the east abutment location (5080,400), and the second

location was (2540,400), which is close to the true damage location. Using the data from the

largest damage level, damage was localized at two main sites. The first and highest indication

was given at the coordinate (3500,0). The second site was again at the coordinate (2540,400).

Comparing the FRAC with the COMAC and SEDI results, this method obtained the poorest

damage localization performance. All three methods had major difficulty obtaining clear and

correct damage localization at the two first levels of damage. The COMAC method provided a

good approximation of the damage location only for the largest damage level. Although with

numerous false-positives, the SEDI method provided good localization for the third damage level.

For all the different damage levels, the only clear and correct damage localization result was

given by the SEDI method at the fourth damage level.

Finally, the proposed SDI method based on modal-parameter sensitivity analysis with Monte

Carlo statistical method was applied to the damage identification experiment. The damage

localization results obtained using the proposed SDI method are shown in Figure 7.21. By

incorporating the sensitivity of each sensor location to stiffness modifications, the proposed SDI

method improved the localization of the bridge damage. For the smallest damage level, the

damage was approximately localized at the midsection coordinate (2540,0) with two false-

positives at (4300,0) and (780,0). Comparing this result with those of the COMAC, FRAC and
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SEDI approaches, the damage localization was significantly improved as the approximate

damage location is now much closer to the true damage location. For the second damage level,

the localization is improved since damage indication covers both sides of the midsection, which

covers the true damage location (2540,400). The two most severe damage levels provided correct

localization with minimal false-positives. Similar to some baseline damage localization

techniques, the SDI damage results, especially at the two least severe damage levels, made no

distinction between the correct damage location (2540,400) and its symmetric position (2540,0).

This fact can be explained by the symmetric characteristics of the test structure combined with

the fact natural frequencies and mode shapes were used.

7.5 Discussion

Damage localization study was presented using modal-based baseline techniques and a proposed

modal sensitivity with statistical sampling approach. Analysis and comparison of these methods

were conducted based on a laboratory aluminum plate vibration experiment and the 1-40 bridge

benchmark vibration data. In this study, the damage localization techniques assume that linearity

applies prior and after damage occurs since they are based on modal analysis. For the aluminum

plate experiment, modal parameters were extracted using a proposed output-only modal analysis

techniques, which is useful when the number of sensor outputs is limited. Because damage was

simulated by mass modifications, the proposed damage localization technique was based on

modal parameter sensitivity due to mass changes. The 1-40 bridge benchmark data is based on

input-output modal analysis approach. For this case, damage was induced by incremental cuts to

structural members, which is intended to reduce the overall structural stiffness. For this reason,

the proposed damage localization technique was based on the modal parameter sensitivity due to

stiffness changes.



www.manaraa.com

219

The damage localization results obtained with the baseline modal-based methods are

consistent with the results presented by Farrar and Jauregui [50]. Although the damage

localization results obtained using the baseline methods were poor, the methods have been shown

in numerous applications to be effective in detecting and localizing damage. To explain the low

performing damage localization results obtained using the baseline methods, the following

observations can be made:

(i) The 1-40 bridge sensor network was of low density, i.e. large structure with small number

of sensors. Ewins [44] reported that modal-based correlation methods are highly

dependent to number of DOF measured in order to be effective. In addition, a limited

number of mode shapes were utilized in this study. For modal-based correlation methods,

the larger the number of resonant frequencies and mode shapes available, the better the

correlation results will be. The quantity of available mode shapes is directly proportional

to sensor network and highly dependent on excitation levels.

(ii) Examinations of the damage localization results are consistent with findings by other

investigators, which verify that resonant frequencies and mode shapes are poor indicators

of damage. The more sophisticated SEDI method showed improved abilities to locate

damage, but only for the most severe damage cases. However, the generalization of the

SEDI method assumes that mode shape second derivatives can be obtained with low

noise levels.

(iii) With exception of the SEDI method, most modal-based correlation methods do not have

a specific criterion for determining whether damage has occurred at a particular location.

In other words, these methods only provide the location(s) with the lowest modal

correlation, which can be ambiguous at times to determine whether these changes
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indicate damage. Although not presented in this work, the SEDI method provides

damage localization results with reduction in stiffness approximations, which can be

useful for damage assessment.

(iv) The damage identification methods are linear, which implies that the structure can be

modeled with linear dynamic models prior and after damage. The nature of the damage

applied to the 1-40 bridge is assumed to be linear damage models. The frequency changes

shown in Table 7.4 demonstrate that as increasing levels of damage were induced, the

fundamental resonant frequency changes in a nonlinear fashion. The latter result negates

the linear relationship damage model assumed by using the baseline damage

identification methods.

(v) Ambient variations influence significantly the measured and extracted modal parameters.

The observed nonlinear relationship between damage level and resonant frequency was

partially due to the varying ambient conditions under which the vibration tests were

performed. Therefore, normalization techniques are required to take into account changes

in ambient conditions or operations, such as temperature and mass loadings.

For the sensitivity-based method, significant improvement in damage identification accuracy

and consistency was made for both the plate experiment and the 1-40 bridge data. A few

observations and conclusions can be made in regards to the proposed SDI approach with

statistical sampling:

(a) By recognizing that each sensor location has a different sensitivity to structural changes

at another structural location, the propose SDI approach provided improved damage

localization accuracy and consistency. The propose modal correlation method takes into

account that not all sensor locations will provide equal level of information when damage
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is localized to a particular area. For example, a sensor located a node will not be able

to provide significant information in regards to mode shape changes.

(b) The presence of systematic or stochastic errors were taken into account by applying the

Monte Carlo statistical method, which minimized the false-positive damage locations. By

obtaining multiple random samples from the same vibration dataset, converging

estimates of the statistical measures of the modal parameters and damage localization

indices were obtained. A particular disadvantage of the Monte Carlo method over other

statistical sampling methods, such as bootstrap method, is that it relies on assumptions of

Gaussian distribution in the excitation or response data.

(c) For highly symmetrical structures, such as the free-free boundary plate, the global

character of the natural frequencies can cause an inability of the method to distinguish

between damage locations and symmetrically positioned healthy areas. In both

experiments, the damage localization approaches resulted in some false-positive

locations, which were symmetric in location to the true damage location.

(d) Similar to COMAC and FRAC methods, the proposed SDI method does not have a

specific criterion, in other words assessment, for determining whether damage has

occurred at a particular location. The method only provide the location(s) with the lowest

modal correlation, which can be ambiguous at times to determine whether these changes

indicate damage. In order to provide damage assessment, such as percent reduction in

stiffness or estimate of mass modification, a finite element model is required which can

be utilized in parallel with experimental modal analysis. By performing finite element

model updating, only then can quantifiable estimates of structural damage severity can be

obtained.
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Incorporation of domain knowledge, such as sensitivity of modal parameters to structural

changes, can improve the performance in terms of damage localization accuracy. Because the

methods analyzed are based on linear modal analysis, the type and size of detectable and

localizable damage is limited to linear damage models. Vibration-based damage analysis is

limited by multiple criteria, such as density and location of sensors, modal analysis techniques,

and modeling errors. All these account to a lower range of damage, which is undetectable and

thus must always be acknowledged. Now, it also contains an upper limit on the size of the

damage assessment it can be applied to. Under sizeable damage or structural modifications, any

structure will result in modified boundary conditions, continuity problems and non-linearities,

which negate the main assumption of linearity required by modal analysis methods.

In terms of the vibration-based damage assessment methods presented in this thesis, damage

detection and localization is achievable under uncertainty, but with certain limitations. Given the

limits in the reliability of results from modal analysis, especially output-only modal analysis, the

damage assessment performance becomes limited. For example, modal testing of complex

structures often miss a critical modes due to modal coupling, limited measurement points, and/or

high damping. Despite these shortcomings, vibration-based damage assessment methods are

reliable as a health monitoring tool, especially when integrated with additional signal processing

techniques and data-driven algorithms. Figure 7.22 exhibits the aforementioned damage

assessment limitations in terms of confidence levels and damage level. As any other structural

health monitoring tool, vibration-based damage assessment analysis is limited by the size and

type of damage it can detect. The lower boundary, ?T?0? , of reliable damage assessment is highly

dependent on the size and sensitivity of the sensory system being utilized. Multiple studies have

reduced ????? by utilizing training data, which quantifies random noise and separates it from the

data outlier caused by damage. The upper boundary, A6high , of reliable damage assessment is due
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to the assumption limitations, such as linearity and non-modifiable boundary conditions, of

the applied technique. The upper boundary Aehigh has not been properly addressed in the literature

even though it is of equal importance in understanding the applicability and reliability of the

damage assessment method.

100(1-«)%
confidence

100(1- af/o
confidence

Unreliable Reliable Unreliable
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?

Undetectable

??^ Damage Size ?T^?
and/or Criticality .
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Unknown structural dynamics
(nonlinear, boundaries, etc)

Figure 7.22. Capability and limitations of structural damage assessment.

7.6 Summary

For damage localization, we presented an improved approach based on the incorporation of

modal-parameter sensitivity and statistical sampling. The proposed approach was validated using

an in-house free-free boundary plate experiment, and using a real-life benchmark vibration data.

In vibration-based damage assessment research, the modal parameters of a structure are

identified, monitored and compared to a known baseline. Work presented in this thesis addresses

one of the key issues of structural health monitoring, which is the management and quantification

of uncertainty on the estimated modal parameters and damage indicators. Uncertainty

management and quantification in structural damage assessment makes use of numerous

variations of statistical methods, fuzzy-sets, and interval-based uncertainty analysis to
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characterize the effect that parametric and non-parametric uncertainty has on physical

experiment or numerical simulation. Uncertainty is not necessarily restricted to imperfect

knowledge of the control parameters. Uncertainty may also take the form of stochastic equations

of motion, environmental variability, measurement errors, changing boundary conditions,

nonlinearities, to name only a few.
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Chapter 8

Evidential Reasoning for Damage Assessment

Early attempts at building diagnostic systems contain the main drawback of lacking the means,

and associate difficulties, in handling uncertain domain knowledge and imprecise non-specific

evidence. The introduction of probability-based diagnostic reasoning methods, such as Bayesian

networks, for knowledge representation and probabilistic inference represented an important

stepping stone in the development of reliable diagnostic systems. However, even probability-

based methods are limited as a formalism for managing uncertainty because of the assumption

that relevant data is available for estimating and building probability functions, which adequately

represent the situation at hand.

In the sequel, vibration-based damage localization is developed based on evidential reasoning

for addressing epistemic uncertainty. This chapter presents a damage assessment method based

on Dempster-Shafer evidence theory for two case studies: (i) aluminum plate problem; (ii) 1-40

bridge benchmark problem. We first derive the evidential reasoning approach to determine the

most probable damage event by comparing the relative damage basic belief assignments (BBA)

of different damage events. The proposed evidential reasoning approach (i) explicitly considers

both modeling and noise errors, (ii) has capability of dealing with imprecise information, and (iii)

updates the damage evidential values whenever new data become available.

8.1 Introduction

One of the main problems of damage diagnostics is finding a way to handle uncertainty in data

and information sources. Diagnostic decision-making is difficult to undertake given two possible
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scenarios. First, the amount of relevant data and information, which is potentially conflictive,

available to a decision maker in diagnostic systems far exceeds the human ability to review and

comprehend them in a timely manner. Second, the lack of training data and information available

for computational methods in diagnostic systems limits the capability of providing crisp decision-

support for humans. Moreover, in numerous situations, diagnostic decisions usually have to be

made under very stressful conditions which adversely affect humans and make them prone to

error. All this leads to the need for the development of an automatic knowledge-based

information fusion system that will support the decision process in a reliable, timely and

consistent manner.

in the literature, a few studies have been found in modeling imprecise knowledge and to

identify how automated reasoning can be applied in damage diagnostic decision-making

[54,64,65,126,178]. Numerous approaches exist for reasoning about uncertain information and

events, some of the approaches include probability measures, Dempster-Shafer (D-S) evidence

theory, fuzzy sets, extensions to first order logic, Bayesian belief networks (BBNs), and others

[136,172]. To date, most damage assessment under uncertainty studies have relied on precise

probabilistic information.

In reality, information sources for structural damage assessment decisions are imprecise and

incomplete to enable probabilistic analysis. The causes for information uncertainty can be lack of

information, conflicting information (multiple indicators providing different results),

indeterminate system states or condition, time-constraints (situations does not allow for increased

collection and careful assessment of information), incapability of assessing or integrating

different types of information, reduced order models, ambiguity, measurement errors, etc. Thus,

in the present study, we will focus on the usage of evidential reasoning based on Dempster-Shafer

evidence theory to obtain a rational damage assessment decision.
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8.2 Evidential Reasoning in Structural Damage Assessment

In classification problems, complete or assumed statistical knowledge regarding the density

functions of each class is required. Statistical pattern recognition along with the Bayesian

decision rule has proved quite efficient in a wide range of applications, but suffers from severe

shortcomings when data is limited [75,101]. When data is scarce, only poor estimated of the

probability functions and expected losses, necessary for Bayes decision rule, can be obtained.
While in situations where data is limited, it is sometimes reasonable to select the action with

minimal estimated expected loss, it may sometimes be preferable to reject the pattern when the

uncertainty is too high, in other words make no classification.

Furthermore, in the absence of training data belonging to certain classes or even the lack of

knowledge regarding the exact number of classes, the Bayesian approach for classification may

not be appropriate. Such situations arise typically in system diagnosis applications, because of the

impossibility of gathering data corresponding to certain system states or because the number of

states (damage configurations) is very high. To solve this problem, the "distance reject option" is

utilized in statistical pattern recognition, which postpones the classification decision when the

object is situated "far" from training samples. However, this approach requires determination of
statistical distance thresholds, which cannot easily done without some underlying model or

known and unknown states.

In order to address the latter classifications problems faced by statistical approaches, a pattern

recognition approach based on Dempster-Shafer (D-S) evidence theory is presented for diagnostic

decision making.

In damage assessment, to setup a frame of discernment, FoD , we need to define the objects

around which the evidential reasoning process is to operate. Damage assessment diagnostic
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objectives must be related to a corresponding FoD representing the diagnosis hypothesis.

Different diagnostic hypothesis correspond to different levels on measurement accuracy and

requirements. In damage detection, the main objective is to gain information about the existence

of structural damage, and according to the D-S evidence theory, the FoD for this situation is

defined as

ßß={?0,-?0] (142)

where H0 denotes the hypothesis for structure being damaged, and -i is its logical negation.

To accommodate additional damage level conditions, the FoD can be expanded to

&jk={H0,Hi,...,Hi,...,HNf} (143)
Ex : {NoFault, Low, Medium, Severe, Failure}

where Ht and Hn indicate hypotheses for the /'* damage level and maximum damage-level

Nf , respectively.

The power set composed with the latter propositions of T is given as

?={0,//?,//1,...,//,,^/,?] (144)
which can be reduced to three possible hypothesis:

» m(0) = 0 : mass of the empty set

• Tn(Hj): belief mass to be in i'h damage level

• m(&) : portion of total belief which remains unassigned, or assigned to the environment

(unknown), after commitment of belief to various subsets of T .
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Similar to the calculation of monotonie probability values, a key problem with evidential

reasoning is the calculation of the basic belief assignment (BBA) obtained from the sources of

information, such as sensors or extracted data features.

8.2.1 Basic Belief Assignment Calculation

In this section, we will present a method for obtaining basic belief assignments (BBAs) from the

outputs of the damage localization process. Given these BBAs, we will then be able to perform

diagnostic decision-making based on unsupervised classification, also known as clustering, of

belief functions. Recently, a new concept of data clustering has been introduced, namely the

credal partition or clustering developed in the framework of the evidence theory [32,33]. The

concept of using belief functions as tools in the classification process generalized existing

concepts based on crisp (black or white) and probabilistic data partitions by allowing an object (to

be classified) to belong to several subsets of classes at once.

Let us consider a set of N0 objects, O = {?1,?2,...,??, ] or measurement vectors, and a set of Nc

possible classifications, C = {c,,c2,...,cN J. Let us assume that we have only partial knowledge

concerning each class membership of each object oi , and that this knowledge is represented by a

basic belief assignment (BBA) w. on the set C . We recall that m¡ (T) stands for complete

ignorance of the class of object i, whereas m,(ck) = \ corresponds to full certainty (crisp

classification) that object i belongs to class ck , and all other situations correspond to partial

knowledge of the class of o¡ . The credal partition of O is defined as M = (m,,w2,...,OTN ) which

denotes the N0 number of BBAs related to the N0 .
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In traditional clustering methods, objects are grouped in an exclusive way, so that if a

certain object belongs to a cluster then it cannot be included in any other cluster. The defect in the

underlying axiomatic model that each object be unequivocally grouped into single clusters is that

it does not provide any apparent similarity to other objects in other clusters. One such manner to

characterize an individual object's similarity to multiple clusters was introduced as fuzzy sets in

1965 by Zadeh [192]. The key idea behind fuzzy sets is to represent the similarity an object

shares with each cluster with a function (termed the membership function) whose values (called

memberships) are between zero and one. Fuzzy clustering allows each object to belong to two or

more clusters with different degrees of membership. In this work, the fuzzy clustering based on

Bezdek's fuzzy c-means approach [14] will be utilized to develop the evidential reasoning

classification approach.

To obtain the credal clustering, an unsupervised classification technique based on k-means, see

section 5.3, will be utilized to obtain the possible sets of classes for each object or measurement

vector. Given a measurement matrix X = (j^) of size N0xp, where ? is the dimension of the

feature space. Let each potential cluster (class) be represented by a center vk . Let V denote a

matrix of size Ncxp composed of the coordinates of the cluster centers such that V119 is the q"'

component of the cluster center vk. Let U = (uik) be the fuzzy cluster matrix of size N0xNc.

Fuzzy clustering looks for the matrices U and V by minimizing the following function

•WU,V) = xfX4 (145)
¿=1 fc=l

subject to the constraints

f>,,=l, Vie {!,...,#„} (146)
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2>a>0, V*e{l,...,7Ve} (147)

where each number uik e [0,l] is interpreted as a degree of membership of object i to cluster

k , ß>\ is a weighing parameter that controls the fuzziness of the clustering, and dik denotes the

similarity distance between X1 and the cluster center vk . In our work, we used the Euclidean

distance to obtain the similarity value as follows

4=k-v,|2 (148)
The objective function is minimized using an iterative algorithm, which optimizes the cluster

centers and the membership degrees. The update formulas are obtained by introducing a Lagrange

multiplier with respect to the constraint shown in Eq. (146) and setting the partial derivatives of

the Lagrangian with respect to the parameters to zero. The fuzzy clustering algorithm starts from

an initial guess for either the partitioning matrix or the cluster centers and iterates until

convergence.

For evidential classification, the BBA mj needs to be determined for each object o¡ in such a

way that wí¿(a,.) is low (high) when the distance d.tj between o¡ and the focal set Aj is high

(low), where A is any non-empty subset of T . Each subset Aj is associated to a center of mass

? of the centers associated to the classes composing A¡ . For generalization purposes, each focal

set A may contain or consist of multiple classes ck . For example, damaged level focal set can be

defined by the following set of classes {Low, Medium, Severe} . The proposed method for obtaining

BBAs for damage localization is based on the work of Masson and Denoeux [109] who

developed the evidential clustering method (ECM).

The center of mass is computed as
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Cj 4=1

where C1 = UJ denotes the cardinality (size) of As and stJ is defined as

^lfC'eA' (150)°n [Ö, otherwise

To derive the evidence based partition M = (m,,m2,...,mNJ and the matrix V of size Ncxp
containing the cluster centers, the following objective function is minimized

N„

Vs(M1V) = X S (c-«)+£¿X, (151)
A1 c&

subject to the following constraint

X {mij+mi&)=\, Vi = \,...,Na (152)
Aj *0

where mi0 denotes m, (0) . The empty set 0 is assimilated to a noise cluster considered to be

at a fixed distance d from each object, which is used to control the number of objects considered

as outliers. The additional weighting coefficient a is introduced for penalizing the subsets in T

of high cardinality.

To minimize Eq. (151), the following optimization scheme is used. First, consider matrix V to

be fixed. To solve the constrained minimization problem with respect partition M , we introduce

N0 Lagrange multipliers Ai as follows

??(?,?·-?.) = ·?>-?(?,?)-S? S {mij+mis>)-1
jlA¡Q@
?,*0

(153)
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By differentiating the Lagrangian with respect to the parameters mu,m¡0 and ?, , and setting

the derivatives to zero, we obtain

d£
dm:a

=?;<-?-?=?

= ßS2M^-I1=O

d£

OA¡ j/a¡q@
S ?+"«-1)=0

(154)

(155)

(156)

Using Eqs. (154)-(156), we obtain the following solutions

( 3 VC"')
m,

f . ?

kW J

1/(A-I)

? ? Y'(^-l)/ j ?1/(^-?)

? 1Zj _?/(«-1) .,2/(," ·* +"
1

?/?ß-1) j2l(ß-l) c2/(A-i)

(157)

(158)

(159)i_j anp-¡>,¿i\p-i) cri,
i Cj a¡j o

By introducing Eq. (159) into Eqs. (157) and (158), the necessary condition of optimality for
M as

m„

-«/(/?-!) ,-2/(/J-I)

S(^-^(/?)+<G2'(>-,))
-, Vi = I,..., N0, VyVA7-CO, ^. *0 (160)

Let us now consider that M is fixed. The minimization of JD_S is an unconstrained

optimization problem. The partial derivatives with respect to the cluster centers are given by

7)1 A, „ „ dd~
:LLC> m¡,

dv, tíí^o ' " dv,
(161)
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(162)

From Eqs. (149), (161) and (162), we obtain

37,.
dv. ?S^« ?~S?.

>

? 0 *
, ?/ = !,..., jvc (163)

Setting to zero the partial derivatives with respect to centers gives the following Nc linear

equations in vk , which can be written as

S* ? cf'^ = S?*S S CXv*. ?/ =?,..,^ (164)
* /A, *0

For a simplified notation, let H, U and B be matrices of size NcxNc, NcxN0 and Ncxp,

respectively, such that

H.=IEcrS%v vu=i,...,^ (165)

?„=SS<^. ?,-=?,...,;?ß (166)

ß«,=S^S<"?%=S^ S cr'<> ?/=?,-,^, ?^=?,...,?
i=l c,eAj*0

(167)
i=l 4·*0

Using Eqs. (165) and (166), the Nc linear equations of Eq. (164) can be re-written as

HV = B (168)

Eq. (168) can be solved for V using a standard linear system solver. The evidential

classification technique starts with an initial guess for either the partition M or the cluster centers

V and iterates until convergence. Figure 8.1 shows the process for obtaining the basic belief

assignments (BBAs).
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Due to the inexistent training data, in this research, we consider the magnitudes of the

vibration-based damage indicators as evidence sources to obtain the BBAs. For each vibration-

based damage indicator method, i.e. COMAC, MSC, SEDI, TFRAC and proposed SDI method,

the normalized damage index value is x¡ e [-1,1] at measurement point / . The next issues to be

perform BBA information aggregation of partially conflictive evidence sources and how to

perform diagnostic decision-making given the BBAs.

Parameters
N11 : number of clusters
a > O: weighting exponent (default=2)
p>\: weighting exponent (default=!)
<5>0: distance to empty set
c. termination threshold (default=! Oe-3)

Damage Localization

N0=Ndof

Input

{xltx2,...xt,...,xNo}

Compute

Solve H1V1 = B1

K-V . <e No

?-»? + 1

Basic BeliefAssignments

{m,(0),m,(ctW®)}

Figure 8.1. Process for obtaining basic belief assignments (BBAs).

8.2.2 Belief Aggregation

The next step would be to combine the belief masses of the individual damage indicator methods

via the Dempster's rule. A classic problem with the Dempster's rule of combination in D-S theory
is the counter intuitive result found when the evidences to be combined have a concentration of
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belief in an element disjoint between them, and a common element with low degrees of belief

assigned to it. Because Dempster's rule does not include any intrinsic mean of belief adaptation,

proportionally to the amount of conflict, they can assign a majority of the belief to the element

less believed but common to the evidences. To demonstrate this issue with the Dempster's rule,

we will use the following example.

Example 1: Car does not start and two information sources are used for diagnostics. Source 1

states that 99% sure the problem is due to starter problem and 1% chance of being a battery

problem. Source 2 assigns 99% certainty to problem being due to a blown fuse and 1% to battery.

The BBA for this scenario is given by

M1 ({starter}) = 0.99 n\ ({battery}) = 0.01
m2 ({fuse}) = 0.99 m2 ({battery}) = 0.01

Direct application of Dempster's rule yields:

T = {starter, battery, fuse}
Tn1Q)M2 ({starter}) = 0
m, ? m2 ({fuse}) = 0
n\®m2 ({battery}) = 1

The conclusion of this result is that the problem has a battery problem, when in fact none of the

information sources think there is a very low chance of the problem being related to the battery.

This limitation of Dempster's rule of combination with normalization leads to results that are

contrary to what might be expected.

Furthermore, each individual information source has a different level of "credibility." When

eliciting expert opinions for intelligent decision-making, it is well known that multiple evidence

from multiple sources are not always combined with equal weights due to reliability of each

information source. Various researchers [63,103,181] have proposed a weighted Dempster's rule
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of combination handling sets of evidence from various sources with different priority. The

main drawback to many of these methods is that the determination of such weights is not always

clear and might simply state that they are obtained from expert user input.

Due to uncertainty that exists in obtaining vibration-based damage indicators, evidence conflict

among different damage assessment techniques are very possible. To address the conflictive

evidences and varying expert source reliability, we propose an extended D-S approach that not

only corrects the counter intuitive effect shown in the latter example but also takes into account

the reliability from each information source. The proposed method for weighted information

sources under conflicting evidence is based on the work of Campos et al. [19] and Guo et al. [63].

For two evidences, the amount of conflict, Con , is given by

CoJt(Tn1^2) = log — I -log (169)
1- X Tn1[A)M1[B)

If there is no conflict between m, and m2 , then Con = 0 , but if there is nothing in common, i.e.

full conflict, then Con = °°. The combination of evidences with a high value of conflict can lead to

counter intuitive results, as was shown in the car-start diagnosis example.

Given that we have two sources of information, each with a weighting coefficient w,

representing the relative reliability of the information source, the extended D-S combination rule

for two bodies of evidence is given by

*"' S mwx{A)rrí¡(B)
M1Qm2(C) = M1(A)Qm1(B)= A^c\ . (170)Lonun^ ,m2 I

where m" = w-m. and k is defined as
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k=\- S ??(?)??(?) (171)
???=0

The division by the conflict between in Eq. (170) will result in a reduced value of m(C) in

comparison to Dempster's rule. This reduced belief becomes an additional belief assigned to the

initial environment belief as follows

m1®m2(e) = l + k-'m?(A)®m'Z(B)- £ m\®m2(C) (172)
Cce,C*0

where ¿~V(A) ®??{?) is equal to the weighted Dempster's rule. The proposed method adds to

this belief a value proportional to the conflict between the evidences.

If more than two evidences are combined, the BBA assignments must first be assigned a

proportional weight and combined using Dempster's rule, and then divide the result by the

conflict among the BBAs, which is given as follows

Con(m¡" ,m2 ,...,m™j = l + \og (173)

where each k value is calculated from each possible pair of evidence combination.

Example 2: Applying the updated rule to the data from Example 1 with equal weights, we

obtain the following

m, T wî2 ({starter} J = 0
m\ (Dm2({fuse}) = 0
M1(Dm2 ({battery}) = 0.2
mje/»2({0}) = O.8

where ?- = 0.0001 and log(r') = 4.
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Comparing results of Example 2 with those of Example 1, it can be seen that the results are

more reasonable and the uncertainty better represented, since 80% of the belief is assigned to the

environment and not a particular hypothesis.

8.2.3 Belief Weight Calculation

The weighting parameter for the Dempster's rule combination is to be determined. The evaluation

and application of weighting parameters is highly dependent on the specific engineering

application and it training data in order to evaluate and compare the damage indicators

techniques. To find the weighting parameters under limited experimental training data, repeated

finite element analysis (FEA) simulations of the structure under varying noise content levels and

excitation types can be utilized to obtained initial weighting parameters. By comparing the

simulated damage localization performance of the available methods, weighted parameters can be

obtained. One drawback to this simulation approach is that simulation cannot take into account all

the different uncertainties and variations associated with the observed structure.

For this analysis, the evidence sources weights are obtained on the basis of the entropy

measure. The term entropy refers to the Shannon entropy, which quantifies, in the sense of an

expected value, the information contained in a message. In information theory, entropy is a

measure of the uncertainty associated with a random variable. Let X = ^x1, ...,xN^ ] be the damage
localization output vector for method i , the weighted coefficient is obtained as follows

1 1W= = (174)
entropy(i) ^ , , , ?

The entropy measure has the following properties: (i) if ? (?.) = 1 and the rest is equal to 0,

then entropy (i) = Q , which implies that there is not any uncertainty in the damage localization
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vector and a decisive conclusion can be made; (ii) on the contrary, at the maximum level of

uncertainty, then p(xj) = l/ Ndof and entwpy(i) reaches its maximum value. Therefore, the

damage assessment method which contains the least variation (uncertainty) in its damage

localization results, will be assigned the largest weighing coefficient, and vice-versa. The

methodology for obtaining the weighing coefficients is based on the previously stated assumption

that damage is localized and discrete.

8.2.4 Decision Analysis

Given that vibration-based damage localization indices have been obtained and the BBAs have

been extracted using the evidential clustering method, then a measure of decision utility is

required to evaluate if we have sufficient evidence for designating a particular structural locations

as damaged, undamaged, or no decision can be reached. Let us assume we have a BBA nij

concerning the validity of hypothesis H1 , and we have to choose an action among a finite set of

actions ? . A loss function ?(a,?) for all (a,y)& AxQ denotes the loss occurred if one chooses

action a and unknown damage variable ? .

The lower and upper expected loss associated with each possible action are given respectively

by

?^{a\?)=S?{?)t???{a,?) (176)

When a decision must be made, beliefs can be transformed to a probability measure, which is

commonly referred to as the pignistic (derived from Latin pignus = a bet) transformation [153],
which is based on a two level mental models:
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• The credal level where beliefs are entertained and represented by belief functions.

• The pignistic level where beliefs are used to make decisions and represented by probability

functions called pignistic probabilities.

Beliefs held at the credal level induce a probability measure at the pignistic level denoted

BetP . The transformation between beliefs and pignistic probabilities is achieved by the pignistic

transformation as follows

where \a\ denotes the cardinality (number of elements of the set) of A. Using the pignistic

probability for the expected risk becomes

R**{a\0)= S?{a,?)?ß??(?)= XmMniZ^M) <178>??? ?a& \?\ ?e?

which results in a different decision strategy.

In damage pattern classification of the /* substructure, B1: ={H0,Hi,-,Hi,...,Hnf] is the set of

classes, where each H1 represents a damage state, and the elements of ? are the actions a¡ of

assigning each substructure to each class H1. With 0-to-l losses, defined as A(^9Oj) = I-S1J for

i,je {!,..., nf} , it can be shown [153] that the minimization of the pignistic risk RBap leads to

choosing the damage state hypothesis H1 with maximum pignistic probability, whereas the

minimization of Rmin leads to choosing the hypothesis with maximum plausibility.

In general, application of the principle of expected loss minimization leads to three distinct

decision strategies [181]:

• minimization of the lower expected loss, yielding a decision rule Dmin defined by
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A^O?) = min J^M*) (179)

• minimization of the upper expected loss, yielding a decision rule D^ defined by

Dma(e) = nnnRJtm(a\e) (180)

• minimization of me expected loss relative to BetP , yielding decision rule Dbel defined by

DBe,P(e) = mmRBetP(a\Û) (181)

The different decision options leave the damage pattern recognition user with multiple

alternatives. The upper expected loss and the pignistic expected loss minimization lead to a more

conservative choice. The riskier approach would logically lead to considering the lower expected

loss of each possible action. Which strategy should be chosen obviously depends on the

situational context. For example, if a prompt diagnostic decision is not required, then a more

conservative decision could be taken or no-decision could be made until further data is collected.

In this work, we have chosen to use the pignistic expected loss to yield the diagnostic decision

rule Dbet .

The D-S evidence theory offers a convenient framework for dealing with uncertainty in

situations where the available information is limited. In many diagnostic applications, it is

difficult or even impossible to build an exhaustive learning set for many reasons, such as some

classes (damage events or anomalies) have very small prior probabilities, collecting samples from

certain classes would be too dangerous or costly, the number of classes is very high, and an

exhaustive list of all possible states of nature is not available. These problems in data collection

for classification training arise especially in diagnosis of complex structural systems.

Damage detection and localization, which rely on the modal parameter estimation such as the
one described in this study, might have the drawback that the damage locations and amount may
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not be uniquely and adequately determined from the estimated modal data. Models with

differently assumed damage locations and amount, i.e. output equivalent, can provide identical

modal parameters. Since the modal testing measures dynamic responses at limited points and

estimates only a few fundamental modes, the number of output equivalent models can increase.

Therefore, multiple hypotheses should be examined to find the local maximum belief mass and

potentially identify the correct damage event. The exhaustive search of all possible models

(hypotheses) is infeasible, and the proposed evidential scheme may identify only some models,

which locally maximize the Bel of existing damage.

In this study, the computational effort to find the most likely damage location increases with

the number of potentially damaged substructures. Since the current damage assessment approach

is developed for continuous monitoring of a structure, we intend to detect damage at its early

stage. Therefore, for continuous monitoring, we can assume that damage is localized in small

discrete number of regions.

8.3 Case Study: Damage Reasoning in Plate Experiment

The application considered in this work concerns the damage localization in an aluminum plate.

The plate experiment of Chapter 6 and the damage assessment results of Chapter 7 are considered

to demonstrate the proposed damage localization based on evidential reasoning. Modal

parameters are used as the extracted features for performing damage assessment analysis.

Damage was induced as localized mass modifications as shown in Figure 8.2. Due to noise

content, the damage localization results obtained in Chapter 7 for each damage assessment

method were imprecise and still require some final level of human reasoning and interpretation in

order to accept or reject damage assessment results.
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Figure 8.2. Finite element shells (1 through 24) and sensor locations (1 through 35) for aluminum plate. Ll and
L2 correspond to the mass modifications locations.

Six damage (mass modifications) cases are studied, which are Cases 1-3: {Ll:12g,27g,54g},

Cases 4-5: {12 : 27g,54g} and Case 6: {¿1 and Ll : 27g} . With the exception of Case 6, all cases of

a single damage location. The damage indication results from the COMAC, MSC, TFRAC, SEDI

and the proposed SDI method were obtained. For each damage indication method, the evidential

clustering technique was applied to extract basic belief assignments (BBAs) for each node or

sensor location. The proposed aggregation method is evaluated by combining the outputs from all

the vibration-based damage localization methods. The belief functions based on evidential

clustering were obtained at the node level (35 nodes) and the finite element shell level (24 shells).

Although 35 nodes are reported, due to the finite element discretization of the plate structure, the

damage localization results aie also reported at the shell level. Aggregation of the BBA results for

all five damage localization methods was also generated using the proposed modified Dempster's

rule which utilized a weighting criterion based on the entropy measure.
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The classification space was decomposed into three possible outcomes. The possible

clusters for the evidential damage localization are {ck : Damaged, Undamaged, No Decision] . The

"No Decision" class is assigned to m(0) , which is the portion of total belief which remains

unassigned, or assigned to the environment (unknown), after commitment of belief to various

subsets of T. The parameters of evidential clustering method are a = \, ß = 2, d2 =10 , and

e = le-A .

To provide crisp diagnostic decisions, the cluster with the highest BBA value is assigned to

each shell. In other words, instead of providing numerical BBA values, the diagnostic results are

provided as "Undamaged," "Damaged," or "No Decision." The "No Decision" diagnostic result is

given when the unassigned BBA is the highest for the particular shell.

The reasoning behind the "No Decision" is as follows. Admission of imprecision in

probabilities is needed to reflect the amount of information on which they are based. When

limited data is available or classification is not clear, assessment of precise probabilities becomes

impossible or impractical, and a damage state classification should then be avoided. In other

words, for partial data, partial answers should be given. The D-S theory handles both the

uncertainty and imprecision contained in data due to the belief and plausibility functions which

can be seen as an interval enclosing imprecise probability. The D-S theory does not pretend to

provide full answers to probabilistic data, but rather provides partial answers by estimating how

much does the evidence supports the truth of a hypothesis, instead of estimating how close the

hypothesis is to being true.
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8.3.1 Data Analysis and Results

Given clear separation between undamaged and damaged clusters, the true damage locations

would be signaled by a high damaged BBA and a low undamaged BBA. All the undamaged

locations would have a high undamaged BBA and a low damaged BBA. Additionally, in clear

damage localization, the BBA for the unassigned cluster should be minimal. The obtained BBAs

at the node level are shown in Figure 8.3 through Figure 8.7 for damage case 3 only. Each figure

reports the BBA for the empty set, the damaged cluster, the undamaged cluster, and the

unassigned cluster. For damage case 3, the nodes showing a high damaged BBA should be nodes

4,5, 9 and 10 due to proximity to damage location.

Figure 8.3 shows the BBAs obtained using the damage localization results of the proposed SDI

method. The only nodes indicating a high BBA are nodes 5 and 10, which is the correct

indication. With the exception of node 3, all the other nodes have a high undamaged BBA. Node

3 has a high indication of unassigned BBA, which states that it is not clear that according to the

evidence provided that this particular can be classified as damaged or undamaged.

Before analyzing the results of the MSC baseline damage localization, it is important to note

that in section 7.4.4 the methods based on the mode shape derivatives, in other words SEDI and

MSC approaches, provided localization results that were heavily affected by false-positives due

to the uncertainty content. Now, Figure 8.4 and Figure 8.5 shows the BBAs obtained using the

damage localization results of the MSC and SEDI method, respectively. In contrast to the results

obtained using the SDI method, the BBA results of these two methods show significant variation

in the BBA values. The results for the MSC method show a high damage BBA for the true

damage nodes 5 and 10, but also at nodes 3, 7, 8, and 20-22, which are considered false-positives.

Also, the number of nodes obtaining high undamaged BBAs is rather low compared to the SDI
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results. Instead, an increasing number of nodes show a high unassigned BBA value. Similar

results are observed for the SEDI method as shown in Figure 8.5.

Figure 8.6 and Figure 8.7 show the BBAs obtained for the COMAC and TFRAC methods,

respectively. As expected, the results are more similar to the SDI results of Figure 8.3 since these

methods are based on direct frequency measurements and mode shapes, which are smaller signal

to noise ratio in comparison to the mode shape derivatives. For the COMAC method, Figure 8.6

shows a high damaged BBA at node 4 only. With exception of nodes 9, 10, 23-25, 29, and 31,

which are unassigned, the rest of the nodes show a high undamaged BBA. For the TFRAC

method, Figure 8.7 shows a high damage BBA for nodes 5, 7, and 35. Node 5 is a true positive,

but nodes 7 and 35 are false positives. Node 6 has the unassigned BBA as its highest value. The

rest of the nodes obtained a high undamaged BBA value.

In all the nodes with high damage (undamage) BBAs, the BBA for the undamaged (damaged)

cluster is very small, which indicates that the similarity to this secondary cluster is minimal. In

addition, the unclassified option becomes useful when a strong similarity does not exists between

a particular cluster type and the node damage localization result.



www.manaraa.com

DDDnnDDDODDUDOlDDDDa

< 0.7

e 0.6

.? 0.3

node»

-¦©- empty set -B- Cluster-Undamaged -^- Cluster-Damaged theta-unassigned [

Figure 8.3. Basic belief assignment partition for damage case 3 using SDI damage localization results.
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Figure 8.6. Basic belief assignment partition for damage case 3 using COMAC damage localization results.
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Figure 8.7. Basic belief assignment partition for damage case 3 using TFRAC damage localization results.

Next, the crisp diagnostic results are presented at the finite element shell level. Due to the

discretization of the aluminum plate, the crisp diagnostic information can only be provided at the

shell level, as shown in Figure 8.2. The evidential clustering approach was applied by combining

for each shell its four corresponding damage localization node values. For quick visual inspection

of the damage localization results, the cells are color coded, where a green color corresponds to a

true-positive, a bluecolor corresponds to a true-negative, a red color corresponds to a false-

positive, a magenta color corresponds to a false-negative, and a gray color corresponds to a no-

decision result.

Table 8.1 shows the crisp diagnostic results for the proposed SDI method. Based on the SDI

damage localization, correct localization was obtained for case 1, 3 and 5. In cases 2, 4 and 6,

correct damage localization was not obtained, but it was also free of false-indication of damage

since many of the shells did not produce a clear BBA value supporting either the damage or

undamaged cluster, and resulted in a no-decision. Only case 1, the case with the smallest mass
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modification, resulted in false-positives for shell numbers 6 and 11, which is expected since

the small mass modification is hard to detect, yet alone correctly localized.

Next, Table 8.2 shows the crisp diagnostic results for the ensemble of the BBA results from all

damage localization methods using the proposed modified Dempster's rule. The approach of

combining multiple BBAs obtained from individual damage localization methods was aimed at

obtaining a more robust damage localization robust results. For this particular case, the results

demonstrate that using the ensemble method correct localization was achieved for all 6 cases

including the case 1, which had the smallest mass modification. The only drawback was that

relatively more false-damage indications were obtained in cases 2, 4, and 6.

Finally, Table 8.3 and Table 8.4 show the crisp diagnostic results for the SEDI and COMAC

methods, respectively. The SEDI results show, as expected, a relatively high number of false-

positives in all cases except cases 4 and 5, but also for these two cases, the true-positives were

obtained. True-positive results were obtained for cases 2 and 3.

An interesting observation is that with exception of the SEDI method, all methods failed to

recognize the secondary damage location at shell 4 in case 6. The COMAC results shown in

Table 8.4 show something very interesting, this particular method did not achieve any true-

positives, and did have multiple false-positives. Furthermore, in all cases, with the exception of

two indications in the SEDI results, no false-negatives were obtained. One possible reason for

such result is that the no-decision option in the evidential reasoning approach overcame the

possible false-negatives.

The non-existent indications of false-negatives can also be due to the fact that indeed all

damage localization methods are sensitive to the mass modifications, but they are also sensitive to

noise content. Hence, the difficulty in diagnosing in damage location is increased due to the noise
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content, and at not having a dominant similarity to damaged or undamaged cluster, the BBA

of the particular shell results is not assigned to any of these two clusters, which results in the no-

decision. The additional diagnostic decision tables for the TFRAC and MSC method are reported

in Appendix B.

Shell #

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Table 8.1. Damage diagnostic decision for shell regions using proposed SDI method.
Trae Positive Trae Negative l-'alse Positive !¦'aise Negative NODECISION

Evidential Reasoning Damage Localization Results
Casel

no decision

TjndamageTT
indecision

DAMAGED

NODECISION

"DAMAGED ~
NODECISION

NODECISION

NO DECISION

NO DECISION

DAMAGED

ÑOlffiCÍSIOÑ-
UNDAMAGED

UNDAMAGED

NODECISION

NO DECISION

UNDAMAGED"
UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

UNDAMAGED

Case 2

UNDAMAGED

UNDAMAGED

UNDAMAGED

^DEaSKJN"
UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

ÜÑDAMAGlF
UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

NODECISION

UNrTAMAGErT
UNDAMAGED

UNDAMAGED

nodecision

no decision

Ijndämäged"
undamaged

Case 3

UNDAMAGED

NO DECISION

NO DECISION

DAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

Case 4

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

UNDAMAGED"
UNDAMAGED

NO DECISION

NO DECISION

UNDAMAGED

no decision

no decision

no decision

no decision

no decision

no decision

nodecision

unFàmXgëïT
undamaged

NO DECISION

NO DECISION

UNDAMAGED

UNDAMAGED

NÒlDECisiÒN-
NODECISION

Case 5

UNDAMAGED

UNDAMAGED

UNDAMAGED

ÑODECISÍOÑ
UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

UNDAMAGED

NODECISION

NO DECISION

NODECISION

NO DECISION

NO DECISION

NO DECISION

DAMAGED

NO DECISION

NO DECISION

ljÑa\MAGEfT
IN DECISION"
UNDAMAGED

UNDAMAGED

UNDAMAGED

NODËCKÏÔN

Case 6

UNDAMAGED

UNDAMAGED

UNDAMAGED

no decision

no decision

üñdamageí5
undamaged

INdecïshîn"
nodecision

"ÜNDAMÄGErT
NO DECISION

NO DECISION

NO DECISION

NO DECISION

NODECISION

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

NODECISION

UNDAMAGED

UNDAMAGED

NODECISION"
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Shell #

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Table 8.2. Damage diagnostic decision for shell regions using ensemble method.

True Positive True Negative l-'alse Positive !•'aise Negative NODECISION

Evidential Reasoning Damage Localization Results
Casel

UNDAMAGED

UNDAMAGED

NO DECISION

DAMAGED

UNDAMAGED

I^^ECÍSlOÑ"
NO DECISION

NO DECISION

NODECISION

NODECISION

NODECISION

UNDAMAGED

no decision

no decision

Ijñdamagéd"
undamaged

undamaged

undamaged

undamaged

undamaged

undamaged

NODECISION

NO DECISION

UNDAMAGED

Case 2

NO DECISION

UNDAMAGED

NODECISION

DAMAGED

NO DECISION

NODECISION

NO DECISION

DAMAGED

NO DECISION
UNDAMAGEfT
UNDAMAGED

"NODECISION"
NO DECISION

NO DECISION

UNDAMAGED

NODECISION

NODECISION

UNDAMAGED

UNDAK-IAGED

UNDAMAGED

NO DECISION

NO DECISION

UNDANiAGED

UNDAMAGED

Case 3

UNDAMAGED

UNDAMAGED

~ÑODECISK>Ñ~
DAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

Case 4

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

nodecision

nodecision

nodecision

Ijñdamagíd"
NO DECISION

DAMAGED

DAMAGED

NODECISION"
NODECISION

NODECISION

NO DECISION

NODECISION

DAMAGED"
"NODECISION
UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

Case 5

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

UNDAMAGED

NODECISION

NODECISION

NODECISION

NODECISION

NODECKION

DAMAGED

NO DECISION

UNDAMAGED

NODECISION

DAMAGED

NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

nodecision
nodecision

Ijndaîvîâged"
undamaged

Case 6

undamaged

undamaged

undamaged

"nöIdecisiön"
no decision

undamaged

undamaged

"nodecìsìòn"
DAMACiED

"ÑO"DECÍSIOÑ~
NODECISION

NODECISION

DÀlvmGËD"
"NODECISION"

NO DECISION

DAMAGED

nodecision

no deckion

no decision

no decision

IMdâmageîT
undamaged

ItoI^KÌKÌON
NO DECISION
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Table 8.3. Damage diagnostic decision for shell regions using SEDI method.

True Positive True Negative l;alse l'ositi ve Eal.se Negative NO DECISION

Evidential Reasoning Damage Localization Results
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

NO DECISION

NO DECISION

NO DECISION

UNDAMAGED

UNDAMAGED

NÖDEdSIÖN
DAMAGED DAMAGED

NO DECISION NO DECISION

UNDAMAGED

"ÑO DECfSÍOÑ
DAMAGED

DAMAGED

'Wdeckïqn-
Ijnüämäghd""

UNDAMAGED

iTODÈaSÏOiT
""DAMAGED"""
NO DECISION

NO DECISION

undamaged

"Wdeciskjn"
"DAMAGED "

DAMAGED

"ÑOrjECISÍOÑ
UNDAMAGED UNDAMAGED

NO DECISION

DAMAGED

NO DECISION
NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

UNDAMAGED"
UNDAMAGED

no decision

no decision

no decision

Ijñdamaged"
NO DECISION

NO DECISION

""DAMAGÊÎ5"""
lío DECISION"
NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

I)AMAGED "
NO DECISION

NO DECISION

NO DECISION

NODECISION

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

NODECISION

NO DECISION

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

NO DECISION

NODECISION

NODECISION

NODECISION

DAMAGED

NO DECISION

no decision

uñt3amaged"
undamaged

undamaged

nodecision"
nodecision

UNDAMAGED

UNDAMAGED

DAMAGED

"NODECISION"
NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NOlÏECÎSTOtT
"undamaged"

nodecision

damaged "
nodecision

"undamaged"
n^dëcïsTon"
no decision

"DAMAGED "
NO DECISION

NO DECBION

NO DECISION

NODECISION

"DAMAGED""
ÑODÉCBIOÑ
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Table 8.4. Damage diagnostic decision for Shell regions using COMAC method.

True Positive True Negative l'alse Positive False Negative NODECISION

Evidential Reasoning Damage Localization Results
Casel Case 2 Case 3 Case 4 Case 5 Case 6

UNDAMAGED

NODECISION

DAMAGED

NODECISION

UNDAMAGED

UNDAMAGED

NO DECISION

NO DECISION

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

UNDAMAGED

UNDAMAGED

NO DECISION

NODECISION

NODECISION

NO DECISION

NO DECISION

NODECISION

UNDAMAGED

UNDAMAGED

NODECISION

"DAMAGED"
NO DECISION

NO DECISION

NO DECISION

NO DECISION

NO DECISION

NODECISION

DAMAGED"
DAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

NODECISION

UNDAMAGED

NODECISION

NO DECISION

NODECISION

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

UNDAMAGED

NODECISION

NODECISION

NODECISION

NODECISION

NO DECISION

NODECISION

NO DECISION

NO DECISION

NODECISION

NO DECISION

NODECISION

NODECISION

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NO DECISION

NO DECISION

UNDAMAGED

UNDAMAGED

DAMAGED

"ÑOlDECiSfOÑ
NO DECISION

NO DECISION

DAMAGED"
NO DECISION

NODECISION

NODECISION

NODECISION

NO DECISION

NODECISION

NODECISION

"!DAMAGED"
iTOlDECÍSIQÑ
NODECISION

NODECISION

NODECISION

NODECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

^DECISION
NODECISION

NODECISION

UNDAMAGED

NODECISION

UNDAMAGED

DAMAGED

1íodecísí0ñ-
nodecision

nodecision

nodecision

nodecision

no decisión

nodecision

nodecision

nodecision

nodecision

nodecision

nodecision

"üntjäWageTT
undamaged

undamaged
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To tabulate the accuracy of the damage localization results obtained using the proposed

evidential reasoning method, the performance is evaluated using the following functions

TP
Damage Detection Rate (DDR) = (182)

FN + TP

FP
False Alarm Rate (FAR) = (183)

TN + FP

TP + TN
Overall Accuracy (OA) = ( 1 84)TP + TN + FP + FN

FP + FN
Overall Miss (OM) = (185)

TP + TN + FP + FN

where TP, TN, FP and FN are true-positive, true-negative, false-positive, and false-negative,

respectively. In addition, the portion of the possible 24 shells ? 6 cases diagnosis results with a

"No-Decision" localization result are also reported.

Table 8.6 shows the obtained damage localization performance measures for all the damage

localization approaches. Since only the SEDI method obtained false-negative results, the DDR

values reported for each method are not of great value since they report a value of 1.00, even

though perfect detection was not achieved. Comparing the FAR values, the worst diagnostic

performance was obtained by the MSC method, which indicates a very high value of 0.83 for

false alarm rate. The MSC overall accuracy stands only at 0.25. The best diagnostic performance

was essentially the same for the proposed SDI method and the baseline TFRAC method. The SDI

and TFRAC reported overall accuracy values of 0.98 and 0.97, respectively.

For the ensemble method, the weighted values based on the inverse entropy measures are

reported in Table 8.5. For each case, the maximum and minimum weights are shown in bold-

italics font. In all cases, the TFRAC method obtained the largest weighting values and the MSC

method obtained the smallest weighting values. These weight results correlate well with the
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visual analysis of the color variation in the damage localization results shown in section 7.3.1.

Again the assumption behind the weighting mechanism is that damage is localized and discrete.

Therefore, damage localization results demonstrating significant variance should receive the

lowest weighting values. The ensemble method results obtained by using the modified weighted

Dempster's rule also obtained a high overall accuracy value of 0.93. Although, the ensemble
method did not obtain the best diagnostic performance, it does achieve the objective of increased

robustness due to information conflict. The ensemble method consisted of the belief function

aggregation of all the damage localization methods, including the poor performing MSC method.

As presented and discussed in section. 8.2.2, one of the advantages of the proposed belief function

aggregation method is that it can deal with conflictive information sources. This advantage was
demonstrated with the current damage localization results.

Table 8.5. Basic belief assignment weights used in modified Dempster's rule for aggregation.

SDI MSC SEDI COMAC TFRAC

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

0.319

0.375

0.439

0.317

0.342

0.332

0.259

0.248

0.254

0.233

0.262

0.273

0.299

0.270

0.291

0.350

0.337

0.315

0.328

0.286

0.257

0.281

0.280

0.316

0.401

0.413

0.419

0.401

0.503

0.336

Table 8.6. Damage localization performance for the evidential reasoning approach.

DDR FAR OA OM NO DECISION

SDI

Ensemble

MSC
SEDI

COMAC
TFRAC

1.00
100

1.00

0.60

0.00
1.00

0.02

0.07

0.83

0.17

0.13

0.04

0.98

0.93

0.25
0.81

0.87
0.97

0.02

0.07

0.75

0.19

0.13

0.03

0.41

0.49

0.51

0.49

0.58

0.40
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Common to all damage localization methods was the high level of "No Decision" results.

Out of the possible 144 (24 shells ? 6 cases) finite element locations, all methods reported in

excess of 40% the "No Decision" diagnosis.

The high level of overall accuracy obtained by the damage localization methods, with the

exception of the MSC approach, is mainly due to the fact that the number of false-positives (true-

negatives) is relatively low (high). This high level of overall accuracy does have some potential

drawback since the true damage location was not localized in all cases. The evidential reasoning

analysis could be adjusted to take a more riskier decision-making approach in order to properly

identify as "Damaged" additional true damage locations, but, excuse the redundancy, this comes

at a risk, which would translate to additional false-positives being localized. This observation

addresses one of the dilemmas in damage detection and localization, which is that an increase in

true-positives is always accompanied by additional false-positives. In other words, the features

that are sensitive to damage are also sensitive to noise.

8.4 Discussion

The damage diagnostic results obtained using the proposed evidential reasoning approach are

much clearer and easier to interpret than the raw damage localization indication obtained by the

vibration-based damage localization methods. The fusion results obtained via the weighted

aggregation of the damage localization belief functions generates robust diagnostic results in

comparison to the best individual damage localization method. The proposed aggregation of

belief functions based on a modified weighted Dempster rule was shown to be capable of dealing

with conflictive information sources. Hence, the modified Dempster's rule can deal with the

problem of fusing multiple information sources of different importance or reliability by

generating weights based on the inverse of the damage localization entropy values.
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The experimental model-based, such as mode shapes, analytical (finite element method),

and the data-driven (pattern recognition) approaches to damage assessment of continuous

structures suffer from the fact that under real conditions no accurate mathematical or

experimental model of the system can be obtained. Damage assessment methods cannot

overcome this deficiency and the current structural health condition can only be known to a

certain degree, and with significant effort. As it was previously observed in Chapter 7, the

damage assessment results that has to be processed is commonly imprecise and incomplete.

Imprecise because current state-of-the-art system identification methods are not at the level of

providing precise location, size, type, and nature of structural changes, such as damage.

Incomplete because current structural sensing capabilities do not provide information local to all

structural members or points. For full structural sensing coverage, it is required that sensors

themselves be part of the structure.

8.5 Summary

In this chapter, we have presented an evidential reasoning approach for structural damage

assessment. The main contribution of this work is the additional decision-making capability

achieved by introducing the Dempster-Shafer evidence theory, an AI approach, in order to deal

with imprecise diagnostic information. The proposed evidential reasoning diagnostic decision-

making approach has been demonstrated with the use of the imprecise vibration-based damage

localization results obtained in Chapter 7.

One advantage of the Dempster-Shafer approach to damage classification is the fact that it can

assign patterns or measurements to the frame of discernment (unassigned or no-decision cluster)
and thus indicate to the analyst that there is insufficient evidence to make a classification of

undamaged or damaged. Another advantage of the proposed evidential reasoning approach is that
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it can be used to perform aggregation or fusion of possibly conflictive information sources.

The overall diagnostic goal in structural health monitoring is to achieve a zero misclassification

rate. The proposed evidential reasoning approach is a step closer towards this goal since the

evidence-based diagnostic classifier will reject the data rather than produce an error.

Over the years, the evolution of data acquisition, signal processing, and data management and

storage capabilities has enabled continuous advancements in the practice of condition monitoring

and diagnosis. In the field of damage assessment for dynamic systems, rapid development is

needed from the well established but limited efficiency traditional methods of vibration model

correlation towards more powerful methods of decision-making under uncertainty.

One of the key aspects distinguishing current damage assessment methods from human

intelligence in dealing with diagnosis of off-nominal events is the enhanced reasoning capability.

Reasoning goes beyond basic diagnoses of observed condition indicators. Addressing and

answering how does the human brain work in making decisions is beyond the current work, but at

the very minimum, we can make observation of the human brain at making decision under

uncertainty. The brain runs well in dealing with all kinds of uncertainty in sensation, perception,

learning, reasoning, thinking, understanding and action.

The computer science research branch of artificial intelligence (AI) is concerned with the

automation of intelligent behavior of machines. AI research aims at creating systems that not only

think like humans, but more specifically, that think rationally with qualitative and quantitative

information in an efficient and consistent manner. Thus, AI attempts to achieve human

intelligence, but with the benefits of computer programs. A sub-research area of AI is decision-

making under uncertainty, which is applicable to the work in damage assessment since diagnostic

decision-making is a task that almost always involves uncertainty.
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Chapter 9

Conclusion

In this dissertation, the research work formulated analytical and experimental vibration-based

structural damage assessment methods in order to minimize the diagnosis errors caused by

uncertainty. An overall intelligent diagnostic reasoning framework was developed to analyze and

interpret structural health monitoring data. This research attempts to bridge the gap between

laboratory-based and real-world implementation of vibration-based structural diagnostic

approaches by directly addressing the issue of uncertainty.

This chapter will re-examine the questions and objectives posed in the introductory chapter, in

the light of the research developments and findings. The main contributions will be presented and

discussed. To conclude, future research directions and possibilities will be offered.

9.1 Summary and Discussions

The research was motivated by the need to improve the efficiency and accuracy of current

vibration-based structural health monitoring (SHM) methods in order to meet the increasing

demands in safety and challenges faced by the trend of a deteriorating infrastructure. As initially

stated, SHM is defined as the use of in-situ, nondestructive sensing and analysis of structural

characteristics for the purpose of detecting, localizing, estimating the severity of damage, and

evaluating the consequences of identified damage on structure.

After a careful and extended review of current SHM techniques and methodologies, it is

concluded that work to date on SHM has evolved significantly over the last decade, but multiple

obstacles and deficiencies remain which prevent the transition from laboratory experiments to
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practical and standard industry application. One of the major reasons for the slow progress of

SHM research to industry practice is the existence of uncertainty at every step of the damage

assessment process.

The main objective of this research was to improve the structural diagnostic performance under

multiple uncertainty sources. The dissertation consisted of the following major research

components. First, we developed a robust feature extraction method based on dimensional

reduction methods to improved the performance of damage detection classification. Second,

given the extracted damage sensitive features, a numerical study in automated damage assessment

classification was performed. Third, through output-only modal analysis of the dynamic structure,

modal parameters of the structure under analysis are identified. Next, damage localization was

performed based on the comparison of identified modal parameters with the reference values

determined for the structure in its pristine condition. The proposed vibration-based damage

assessment studies were performed and validated via simulations using finite element models,

laboratory experiments on plate structure, and benchmark vibration data from a real-world

highway bridge.

9.2 Contributions

The motivating question behind this work is how information should be managed to support

diagnostic decision-making under uncertainty. By addressing the uncertainty issue in structural

diagnostics, the false-diagnosis in structural damage assessment is reduced. The main

contributions of this dissertation are:

Uncertainty in SHM: a new vibration-based SHM methodology which directly accounts for

uncertainty was developed. The developed systematic vibration-based SHM methodology

recognizes and mitigates the associated damage assessment uncertainties. Damage detection and
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localization is performed considering (i) uncertainties in the measurement noise and the

analytical modeling; (ii) operational and environment variability; and (iii) the cases when only a

small number of degrees of freedom are available for measurement and a few modes are

estimated.

Uncertainty Management: The appropriate representation, analysis and management of context

uncertainties were analyzed and studied. The multiple uncertainty management paradigms -

probability, fuzzy-sets, and imprecise probabilities, such as the Dempster-Shafer (D-S) evidence

theory, - were presented and assessed in terms of their advantages and disadvantages. The choice

of uncertainty analysis method is not arbitrary. Thus, it was concluded that the choice of

uncertainty analysis approach depends on the nature of the problem and the expertise of the user.

Probability theory can handle aleatory uncertainty contained in data, but it cannot treat the

imprecision. Fuzzy-sets theory can handle the vagueness type imprecision by replacing the

additive axiom in probability theory with the weaker monotonicity axiom. In the case of

insufficient information and no-conflicting evidence, the possibility theory is a suitable method to

quantify uncertainty. D-S theory, and other similar imprecise probability approaches, are more

appropriate where uncertainty cannot be assigned precise probability to a proposition, and

conditioning effects are difficult or impossible to measure separately, and prior odds are not

pertinent.

Damage Detection: an effective and robust damage detection technique was developed based

on the ensemble of dimensional reduction techniques. Damage in structures needs to be detected

at an early stage in order to reduce the cost of maintenance and possibility of an unsafe scenario,

but the change of dynamic characteristics of structures is relatively insensitive to small scale

damage. Increased robustness in the extraction of damage sensitive features was achieved by

systematically incorporating pattern recognition techniques. Two case studies were conducted.
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The aeroacoustic experimental studied impact damage detection in a sub-scale wing structure

via acoustic measurements under varying excitation levels. The detection of structural cavities

was achieved via dimensional reduction of multiple time measurements of frequency response

datasets. The vibration experiment studied the detection of abrupt structural changes and their

variation. The structural changes simulating damage were induced by localized mass

modifications. By applying the proposed damage detection approach, clear indication of damage

was obtained with zero false-positive or false-negative. From the results obtained, we may

conclude that under test-to-test variability and with no clear visible changes of the frequency

response, the proposed damage detection can serve as a means to effectively detect the presence

of structural changes, which are characteristic of damage events. The idea of integrating decisions

of several diverse feature extraction techniques into an ensemble, which improves upon the

performance and robustness of the individual members, is novel. Comparison to damage

detection results obtained via individual feature extraction methods demonstrated that proposed

ensemble approach was more robust and reliable.

Modal Analysis: In order to perform model-based damage localization under limited sensor

outputs, an output-only modal analysis technique was developed based on roving sensor

approach. Given the experimental model obtained using output-only modal analysis approach,

damage localization can then be performed on modal parameters correlation analysis of damaged

and undamaged conditions. The proposed approach is quite useful when the number of required

sensor outputs is much greater than the available measurement channels. The method was tested

with an in-house aluminum plate experiment. Measurements were performed under 4xFree

(FFFF) boundary conditions. The experimental results show that the proposed approach was able

to extract well separated mode shapes.
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Damage Localization: a damage localization approach was developed based on the modal

parameter sensitivity to local structural changes, such as stiffness reduction and mass

modifications, and integrated with a statistical sampling technique. The sensitivity-based damage

index (SDI) is based upon the correlation interpretation of changes in modal parameters between

an undamaged reference condition and a damaged one. The inclusion of modal-sensitivity into the

damage correlation analysis improves the detection of the degree(s)-of-freedom which are

affected the most by the structural changes. The proposed SDI method reduced false-negative

damage diagnosis, but at the same time, it does not guarantee damage localization results free of

false-positives. To minimize the event of false-positives (damage indication in damage-free

areas), the Monte Carlo statistical sampling method was introduced into the damage localization

process to obtain estimates of the modal parameter statistical measures. By applying the statistical

sampling technique, the aleatory uncertainty due to measurement and estimate errors are

minimized. The proposed damage assessment techniques were applied and thoroughly validated

on a basis of in-house experiments on simple structures in laboratory conditions and real

engineering structures.

Decision-Making Under Uncertainty: an evidential reasoning approach based on Dempster-

Shafer evidence theory was developed for performing diagnostic classification under imprecise

information. One advantage of the Dempster-Shafer approach to damage classification is the fact

that it can assign patterns or measurements to the frame of discernment (unassigned or no-

decision cluster) and thus indicate to the analyst that there is insufficient evidence to make a

classification of undamaged or damaged. Another advantage of the proposed evidential reasoning

approach is that it can be used to perform aggregation or fusion of possibly conflictive

information sources.
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9.3 Future Work

In order to make structural health monitoring a standard practice in industry, the issue of false-

diagnosis needs to be addressed. Very important to the research area of damage diagnosis is the

recognition and identification of the limitations of each particular approach in terms of

performance and applicability. By understanding the limitations of the diagnostic system, the

following two scenarios can be avoided: (1) unnecessary diagnostic system costs in order to

achieve needless high-levels of accuracy performance; and (2) blind human dependence on

diagnostic system due to belief that diagnostic system is always correct. Not all damage diagnosis

problems require high accuracy performance. For example, damage localization in a civilian

bridge is only desired at the sub-structure scale and not at the square millimeter scale. In addition,

the understanding that no diagnostic system can reach 100% accuracy at all times and situations

will enable acceptance and introduction of diagnostic systems into safety-critical applications, but

with well developed processes for mitigating the possible false-diagnosis scenarios.

In damage assessment, all the context uncertainties cannot be well addressed by endless

simulations and laboratory experiments. The application of the proposed methods, as well as

those already available in the literature, must be incorporated and validated in additional real

structures. First, validation must take place by incorporating developed techniques with

appropriate equipment into existing dynamic structures. Second, the viability of damage

diagnostics approaches can only be evaluated once new dynamic structures are designed and

constructed with an embedded diagnostic system, which is evaluated during a complete life cycle

of the dynamic structure. Development of such a validation and verification (V&V) environment

will allow diagnostic sensitivities to be evaluated, inaccuracies to be quantified, and economic

cost-benefit analysis to be determined, to name a few.
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Finally, recent advances in sensory equipment, such as embedded sensors, smart materials,

such as piezoelectric nanomaterials, information technologies, such wireless communication, and

intelligent software, such as artificial intelligence, will have significant impact of the

development of structural monitoring and diagnosis. The development of a cost-effective, large
scale instrumentation based on these technologies must be carried out in parallel to make the

continuous monitoring and diagnosis of dynamic structures a reality.



www.manaraa.com

Appendix A

Additional Mode Shapes
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Figure A.l. Additional mode shapes identified in the presence of impact excitation for the plate experiment.
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Figure A.2. Poor quality mode shapes not utilized in damage assessment process of the plate experiment.
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Additional Evidential Reasoning Results
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Table B.l. Damage diagnostic decision for shell regions using MSC method.

TP TN IP FN NODECISION

Evidential Reasoning Damage Localization Results
Shell # Casel Case 2 Case 3 Case 4 Case 5 Case 6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
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UNDAMAGED
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NODECISION

NO DECISION
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NODECISION^
DAMAGED
DAMAGED

ÑODECl¥lQÑ"
NO DECISION

NO DECISION

DAMAGED

DAMAGED

DAMAGED

DAMAGED
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DAMAGED
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NO DECISION"
NO DECISION

~????(???)"
DAMAGED

NODECiSK)N

DAM AGIiD

DAMAGED

DAMAGED

DAMAGED

DAMAGED

DAMAGED

"ÑO"d¥CISÍOÑ

DAMAGED NODECISION

UNDAMAGED

DAMAGED

NO DECISION
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NO DECISION

NO DECISION

I)AMAGEl)"
DAMAGED
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DAMAGED
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I5ÄMÄGÜD ~"
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DAMAGED

DAMAGED
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NODECISION
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DAMAGED
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nodecision
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Table B.2. Damage diagnostic decision for shell regions using TFRAC method.

TP TN 11> 1·? NO DECISION

Evidential Reasoning Damage Localization Results
Casel Case 2 Case 3 Case 4 Case 5 Case 6

UNDAMAGED

UNDAMAGED

NO DECISION

DAMAGED
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UNDAMAGED

NO DECISION

NODECISION

NO DECISION

NO DECISION

NO DECISION

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

UNDAMAGED

NODECISION

NODECISION

UNDAMACiED

no decision

no decision

IStoämägId"
undamaged

undamaged

l^DËCÏSÎQNT
NO DECISION

IjNDAMAGErF
UNDAMAGED
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